School of Medical Laboratory Science

Curriculum Guide
Student Handbook
School/Student Catalog

Class: June 2017 – June 2018
Table of Contents

1. CHIEF ADMINISTRATOR/OFFICER OF SCHOOL
 LECTURE SCHEDULE

2. CAUSES FOR DISMISSAL, DRESS CODE, APPLIED EXPERIENCE
 CANNOT BE GUARANTEED, and OFFICIAL RECORD RETENTION
 POLICY

3. RESULTS OF THE PROGRAM OUTCOME MEASURES, RULES AND
 REGULATIONS, and POLICY ON NOTIFICATION OF ACADEMIC
 PROGRESS TO STUDENTS

4. MISSION STATEMENT, PROGRAM GOALS, and STUDENT
 ACCEPTANCE and TRANSFER CREDIT

5. PROGRAM COMPETENCIES

6. ESSENTIAL FUNCTIONS
 (Honor Code, Policy for Completion of Program, Health and Safety
 Policy, Confirmation of Knowledge of Rules and Regulations)

7. SNOW POLICY, REFUND POLICY, and ELECTRONIC DEVICES
 POLICY

8. LATE POLICY
 LIBRARY FACILITIES

9. ACHIEVEMENT POLICY
 POLICY ON STUDENT REPEATING THE ENTIRE YEAR

10. STUDENT EMPLOYMENT AND SERVICE WORK POLICY, POLICY
 ON STUDENTS PERMITTED TO PERFORM TEST PROCEDURES,
 and OUTCOME MEASURES

11. FACULTY SELECTION
 STUDENT RIGHTS, PRIVILEGES, AND RESPONSIBILITIES, ETC.

12. ORIENTATION COURSE: PROFESSIONALISM AND ETHICS ½
 GRADE AND OBJECTIVES

13. GENERAL RULES FOR CLASSROOM, POLICY ON PROBATION,
 ACADEMIC CALENDAR, AND BEHAVIOR EXPECTATIONS FOR
 DIDACTIC AND CLINICAL EXPERIENCE

14. STUDENT RECORDS POLICY
 POLICY ON ROTATION PRACTICAL GRADING

15. ENROLLMENT AGREEMENT FOR STUDENT

16. MT 410 Orientation (Safety and Quality Assurance) LECTURE
 OUTLINE AND OBJECTIVES

17. MT 409 Education and Research Methods and Design LECTURE
 OUTLINE AND OBJECTIVES

18. MT 408 Clinical Laboratory Supervision and Management
 LECTURE OUTLINE AND OBJECTIVES

19. MT 400 Clinical Hematology (Includes Hemostasis) LECTURE
 OUTLINE AND OBJECTIVES

20. MT 401 Clinical Immunology LECTURE OUTLINE AND OBJECTIVES

21. MT 402 Immunohematology (Blood Bank) LECTURE OUTLINE AND
 OBJECTIVES

22. MT 403 Clinical Chemistry LECTURE OUTLINE AND OBJECTIVES

23. MT 404 Urinalysis and Body Fluids LECTURE OUTLINE AND
 OBJECTIVES

24. MT 405 Microbiology LECTURE OUTLINE AND OBJECTIVES

25. MT 412 & 506 Computer Science and Laboratory Skills LECTURE
 OUTLINE AND OBJECTIVES

26.

27.

28.

29.

30.

31.
Chief Administrator/Officer of School

Douglas J. Moyer
Sentara RMH Medical Center President
and
Corporate Vice President Sentara Healthcare

Duties and responsibilities of the officer above is ultimate administration of Sentara RMH School of Histotechnology and School of Medical Laboratory Science.

Please Note:

The student baccalaureate degree must be from a regionally accredited United States college/university or an accredited Canadian university accredited by an association acceptable to ASCP. Regionally accredited colleges or universities are accredited by one of the following associations acceptable to ASCP:

- MSCHE – Middle States Commission on Higher Education
- HLC – Higher Learning Commission
- NWCCU – Northwest Commission on Colleges and Universities
- NEASC-CIHE – New England Association of Schools and Colleges, Inc.
- SACSCOC – Southern Association of Colleges and Schools Commission on Colleges
- WASC-ACCJC – Western Association of Schools and Colleges-The Accrediting Commission for Community and Junior Colleges OR WSCUC – WASC Senior College and University Commission

Degrees from colleges/universities outside of the United States and Canada must be evaluated by a foreign transcript evaluation agency acceptable to ASCP.

NOTE: We will prepare you for the lab portion of the ASCP exam or any certification exam. We cannot change the non-lab (experience and/or undergraduate accreditation) requirement for any certification exam. We cannot guarantee that you will be able to sit for any exam.
Online Orientation Training
(Revised 2/13/2017)

Monday, June 5th, 2017

Please complete the training located at the following links. The links do take a bit of time to load, so please be patient.

Mission, Vision, and Values: http://sentara.articulate-online.com/9094691092

Sentara Commitments: http://sentara.articulate-online.com/9094644255

Xpress Orientation: You will need to complete everything listed in the Orientation Self-Study Packet. The packet and required materials will be provided as handouts.

Complete, sign, and date the first page of the Orientation Self-Study Packet and return it no later than Friday, June 9th, 2017.
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9:00 Curriculum Guide</td>
<td>9:00 Orientation 1</td>
<td>9:00 Computer Training</td>
<td>9:00 Orientation 2</td>
<td>9:00 Chemistry 1</td>
<td>9:00 Orientation 3</td>
</tr>
<tr>
<td></td>
<td>10:00 Sentara Online</td>
<td>1:30 Microbiology 1</td>
<td>1:30 Microbiology 2</td>
<td>1:30 Phlebotomy 1</td>
<td>10:30 Orientation 3</td>
<td>1:30 Hematology 1</td>
</tr>
<tr>
<td></td>
<td>Orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 3</td>
<td>9:00 Chemistry 2</td>
<td>9:00 Microbiology 4</td>
<td>9:00 Chemistry 3</td>
<td>9:00 Microbiology 5</td>
<td>9:00 Microbiology 6</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>Notes:</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 6</td>
<td>9:00 Chemistry 4</td>
<td>9:00 Microbiology 7</td>
<td>9:00 Chemistry 5</td>
<td>9:00 Microbiology 8</td>
<td>9:00 Microbiology 9</td>
</tr>
<tr>
<td></td>
<td>1:30 Hematology 2</td>
<td>1:30 Phlebotomy 2</td>
<td>1:30 Hematology 3</td>
<td>10:30 Phlebotomy 5</td>
<td>1:30 Hematology 4</td>
<td>1:30 Hematology 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 10</td>
<td>9:00 Chemistry 6</td>
<td>9:00 Microbiology 10</td>
<td>9:00 Chemistry 7</td>
<td>9:00 Microbiology 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:30 Blood Bank 2</td>
<td>1:30 Hematology 9</td>
<td>1:30 Blood Bank 3</td>
<td>1:30 Blood Bank 3</td>
<td>1:30 Hematology 10</td>
<td></td>
</tr>
</tbody>
</table>

Sentara RMH School of Medical Laboratory Science
Daily Class Time: Monday-Friday 9:00-2:30
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9:00 Microbiology 12</td>
<td>5:00 Microbiology 13</td>
<td>6</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 11</td>
<td>1:30 Hematology 12</td>
<td>9:00 Chemistry 8</td>
<td>9:00 Microbiology 14</td>
<td>1:30 Hematology 13</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>July 4th Holiday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9:00 Microbiology 13</td>
<td>6</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 12</td>
<td>9:00 Chemistry 8</td>
<td>1:30 Blood Bank 4</td>
<td></td>
<td>1:30 Hematology 13</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:30 Hematology 12</td>
<td>9:00 Microbiology 17</td>
<td>9:00 Blood Bank 5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>4</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9:00 Chemistry 9</td>
<td>9:00 Microbiology 16</td>
<td>9:00 Chemistry 10</td>
<td>9:00 Microbiology 17</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>9:00 Blood Bank 5</td>
<td>1:30 Hematology 15</td>
<td>1:30 Blood Bank 6</td>
<td>1:30 Hematology 16</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9:00 Microbiology 15</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 14</td>
<td>9:00 Chemistry 9</td>
<td>9:00 Microbiology 17</td>
<td>9:00 Microbiology 18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9:00 Chemistry 9</td>
<td>9:00 Microbiology 16</td>
<td>9:00 Chemistry 10</td>
<td>9:00 Microbiology 17</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>9:00 Microbiology 16</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 5</td>
<td>1:30 Hematology 15</td>
<td>9:00 Chemistry 10</td>
<td>9:00 Microbiology 18</td>
<td>9:00 Microbiology 20</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9:00 Blood Bank 7</td>
<td>9:00 Microbiology 19</td>
<td>9:00 Microbiology 20</td>
<td>1:30 Blood Bank 9</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>9:00 Microbiology 19</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 7</td>
<td>1:30 Hematology 18</td>
<td>9:00 Chemistry 12</td>
<td>9:00 Microbiology 21</td>
<td>9:00 Microbiology 23</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>9:00 Chemistry 12</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 8</td>
<td>1:30 Hematology 19</td>
<td>9:00 Chemistry 13</td>
<td>9:00 Blood Bank 10</td>
<td>1:30 Blood Bank 11</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9:00 Microbiology 20</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 9</td>
<td>9:00 Microbiology 21</td>
<td>9:00 Microbiology 22</td>
<td>9:00 Blood Bank 11</td>
<td>9:00 Microbiology 23</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>9:00 Microbiology 21</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 20</td>
<td>1:30 Hematology 18</td>
<td>9:00 Microbiology 22</td>
<td>1:30 Blood Bank 10</td>
<td>1:30 Hematology 22</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>9:00 Microbiology 22</td>
<td>17</td>
<td>18</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 21</td>
<td>9:00 Microbiology 23</td>
<td>9:00 Blood Bank 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>9:00 Microbiology 23</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 9</td>
<td>9:00 Hematology 24</td>
<td>9:00 Microbiology 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>9:00 Microbiology 24</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 23</td>
<td>1:30 Hematology 22</td>
<td>9:00 Microbiology 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>9:00 Microbiology 25</td>
<td>20</td>
<td>21</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 10</td>
<td>9:00 Microbiology 26</td>
<td>9:00 Microbiology 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>9:00 Microbiology 26</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 11</td>
<td>1:30 Hematology 22</td>
<td>9:00 Microbiology 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>9:00 Microbiology 27</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 23</td>
<td>9:00 Microbiology 28</td>
<td>9:00 Microbiology 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>9:00 Microbiology 28</td>
<td>23</td>
<td>24</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 24</td>
<td>1:30 Hematology 23</td>
<td>9:00 Microbiology 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>9:00 Microbiology 29</td>
<td>24</td>
<td>25</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 25</td>
<td>9:00 Microbiology 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>9:00 Microbiology 30</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 26</td>
<td>1:30 Hematology 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>9:00 Microbiology 31</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 25</td>
<td>9:00 Microbiology 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>9:00 Microbiology 32</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 26</td>
<td>9:00 Microbiology 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>9:00 Microbiology 33</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 27</td>
<td>9:00 Microbiology 34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>9:00 Microbiology 34</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 28</td>
<td>9:00 Microbiology 35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>9:00 Microbiology 35</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 29</td>
<td>9:00 Microbiology 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
August 2017

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9:00 Chemistry 15</td>
<td>9:00 Microbiology 25</td>
<td>9:00 Chemistry 16</td>
<td>9:00 Microbiology 26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Blood Bank 11</td>
<td>1:30 Hematology 24</td>
<td>1:30 Blood Bank 12</td>
<td>1:30 Hematology 25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>9:00 Microbiology 27</td>
<td>9:00 Chemistry 17</td>
<td>9:00 Microbiology 28</td>
<td>9:00 Chemistry 18</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 26</td>
<td>1:30 Blood Bank 13</td>
<td>1:30 Hematology 27</td>
<td>1:30 Blood Bank 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>9:00 Microbiology 30</td>
<td>9:00 Chemistry 19</td>
<td>9:00 Microbiology 31</td>
<td>9:00 Chemistry 20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 29</td>
<td>1:30 Blood Bank 15</td>
<td>1:30 Hematology 30</td>
<td>1:30 Blood Bank 16</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>9:00 Microbiology 33</td>
<td>9:00 Chemistry 21</td>
<td>9:00 Microbiology 34</td>
<td>9:00 Chemistry 22</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 32</td>
<td>1:30 Blood Bank 17</td>
<td>1:30 Hematology 33</td>
<td>1:30 Blood Bank 18</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>9:00 Microbiology 36</td>
<td>9:00 Chemistry 23</td>
<td>9:00 Microbiology 37</td>
<td>9:00 Chemistry 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:30 Hematology 35</td>
<td>1:30 Blood Bank 19</td>
<td>1:30 Hematology 36</td>
<td>1:30 Blood Bank 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Sentara RMH School of Medical Laboratory Science
- Daily Class Time: Monday-Friday 9:00-2:30
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9:00 Microbiology 38</td>
<td>1:30 Hematology 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Labor Day Holiday</td>
<td>No Class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9:00 Microbiology 38</td>
<td>1:30 Urinalysis 1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9:00 Chemistry 25</td>
<td>1:30 Blood Bank 21</td>
<td>9:00 Microbiology 39</td>
<td>1:30 Urinalysis 1</td>
<td>9:00 Chemistry 26</td>
<td>10:30 Coagulation 1</td>
</tr>
<tr>
<td></td>
<td>9:00 Chemistry 25</td>
<td>1:30 Blood Bank 21</td>
<td>9:00 Microbiology 39</td>
<td>1:30 Urinalysis 1</td>
<td>9:00 Chemistry 26</td>
<td>10:30 Coagulation 1</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 40</td>
<td>1:30 Urinalysis 2</td>
<td>9:00 Microbiology 40</td>
<td>1:30 Urinalysis 2</td>
<td>9:00 Microbiology 40</td>
<td>1:30 Urinalysis 2</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 41</td>
<td>1:30 Urinalysis 3</td>
<td>9:00 Microbiology 42</td>
<td>1:30 Urinalysis 4</td>
<td>9:00 Microbiology 42</td>
<td>1:30 Urinalysis 4</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 41</td>
<td>1:30 Urinalysis 3</td>
<td>9:00 Microbiology 42</td>
<td>1:30 Urinalysis 4</td>
<td>9:00 Microbiology 42</td>
<td>1:30 Urinalysis 4</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 43</td>
<td>1:30 Urinalysis 5</td>
<td>9:00 Microbiology 43</td>
<td>1:30 Urinalysis 5</td>
<td>9:00 Microbiology 43</td>
<td>1:30 Urinalysis 5</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 44</td>
<td>1:30 Urinalysis 6</td>
<td>9:00 Microbiology 45</td>
<td>1:30 Urinalysis 7</td>
<td>9:00 Microbiology 45</td>
<td>1:30 Urinalysis 7</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 44</td>
<td>1:30 Urinalysis 6</td>
<td>9:00 Microbiology 45</td>
<td>1:30 Urinalysis 7</td>
<td>9:00 Microbiology 45</td>
<td>1:30 Urinalysis 7</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 46</td>
<td>1:30 Urinalysis 8</td>
<td>9:00 Microbiology 46</td>
<td>1:30 Urinalysis 8</td>
<td>9:00 Microbiology 46</td>
<td>1:30 Urinalysis 8</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 47</td>
<td>1:30 Urinalysis 9</td>
<td>9:00 Microbiology 48</td>
<td>1:30 Urinalysis 10</td>
<td>9:00 Microbiology 48</td>
<td>1:30 Urinalysis 10</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 47</td>
<td>1:30 Urinalysis 9</td>
<td>9:00 Microbiology 48</td>
<td>1:30 Urinalysis 10</td>
<td>9:00 Microbiology 48</td>
<td>1:30 Urinalysis 10</td>
</tr>
<tr>
<td></td>
<td>9:00 Microbiology 49</td>
<td>1:30 Urinalysis 11</td>
<td>9:00 Microbiology 49</td>
<td>1:30 Urinalysis 11</td>
<td>9:00 Microbiology 49</td>
<td>1:30 Urinalysis 11</td>
</tr>
</tbody>
</table>
October 2017 Schedule

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:00 Microbiology 50 1:30 Urinalysis 12</td>
<td>9:00 Chemistry 33 10:30 Coagulation 8 1:30 Blood Bank 29</td>
<td>9:00 Microbiology 51 1:30 Urinalysis 13</td>
<td>9:00 Chemistry 34 1:30 Blood Bank 30</td>
<td>9:00 Microbiology 52 1:30 Urinalysis 14</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:00 Microbiology 53 10:30 Urinalysis 15 1:30 Parasitology 1</td>
<td>9:00 Chemistry 35 1:30 Blood Bank 31</td>
<td>9:00 Microbiology 54 10:30 Education 1 1:30 Parasitology 2</td>
<td>9:00 Chemistry 36 1:30 Blood Bank 32</td>
<td>9:00 Microbiology 55 10:30 Education 2 1:30 Parasitology 3</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:00 Microbiology 56 10:30 Education 3 1:30 Parasitology 4</td>
<td>9:00 Chemistry 37 1:30 Blood Bank 33</td>
<td>9:00 Microbiology 57 10:30 Education 4 1:30 Parasitology 5</td>
<td>9:00 Management 1 1:30 Blood Bank 34</td>
<td>9:00 Microbiology 58 1:30 Management 2</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:00 Microbiology 59 1:30 Management 3</td>
<td>9:00 Parasitology 6 1:30 Blood Bank 35</td>
<td>9:00 Microbiology 60 1:30 Management 4</td>
<td>9:00 Parasitology 7 1:30 Management 5</td>
<td>9:00 Parasitology 8 1:30 Management 6</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:00 Immunology 1 1:30 Management 7</td>
<td>9:00 Immunology 2 1:30 Management 8</td>
<td>Notes:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sentara RMH School of Medical Laboratory Science

Daily Class Time: Monday-Friday 9:00-2:30

Notes:
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9:00 Immunology 3 1:30 Management 9</td>
<td>9:00 Immunology 4 1:30 Management 10</td>
<td>9:00 Immunology 5 10:30 Mycology 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>9:00 Immunology 6 10:30 Mycology 2</td>
<td>9:00 Immunology 7 10:30 Mycology 3</td>
<td>9:00 Immunology 8 10:30 Mycology 4</td>
<td>9:00 Immunology 9 10:30 Mycology 5</td>
<td>9:00 Immunology 10 10:30 Mycology 6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>9:00 Immunology 11 10:30 Mycology 7</td>
<td>9:00 Immunology 12 10:30 Mycology 8</td>
<td>9:00 Immunology 13 10:30 Mycology 9</td>
<td>9:00 Immunology 14 1:30 Mycology 10</td>
<td>9:00 Immunology 15 12:00 Practical Exams</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Thanksgiving Holiday No Class</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotation 1</td>
<td>Rotation 1</td>
<td>Rotation 1</td>
<td>Rotation 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
<td>Sat</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Rotation 1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>Rotation 2</td>
</tr>
<tr>
<td></td>
<td>Rotation 2</td>
<td>Rotation 2</td>
<td>Rotation 2</td>
<td>Rotation 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>Rotation 3</td>
</tr>
<tr>
<td></td>
<td>Rotation 3</td>
<td>Rotation 3</td>
<td>Rotation 3</td>
<td>Rotation 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>Winter Holiday</td>
</tr>
<tr>
<td></td>
<td>Winter Holiday</td>
<td>No Class</td>
<td>Winter Holiday</td>
<td>No Class</td>
<td></td>
<td>Winter Holiday</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>Winter Holiday</td>
</tr>
<tr>
<td></td>
<td>Winter Holiday</td>
<td>No Class</td>
<td>Winter Holiday</td>
<td>No Class</td>
<td></td>
<td>Winter Holiday</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Sentara RMH School of Medical Laboratory Science

Daily Class Time: Monday-Friday 9:00-2:30

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter Holiday
No Class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Rotation 4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Rotation 5</td>
<td>Rotation 5</td>
<td>Rotation 5</td>
<td>Rotation 5</td>
<td>Rotation 5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Rotation 6</td>
<td>Rotation 6</td>
<td>Rotation 6</td>
<td>Rotation 6</td>
<td>Rotation 6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Rotation 7</td>
<td>Rotation 7</td>
<td>Rotation 7</td>
<td>Rotation 7</td>
<td>Rotation 7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotation 8</td>
<td>Rotation 8</td>
<td>Rotation 8</td>
<td></td>
<td></td>
<td>Notes:</td>
</tr>
</tbody>
</table>

Notes:
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Rotation 8</td>
<td>2</td>
<td>Rotation 8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Rotation 9</td>
<td>8</td>
<td>Rotation 9</td>
</tr>
<tr>
<td></td>
<td>Rotation 9</td>
<td>Rotation 9</td>
<td></td>
<td>Rotation 9</td>
<td>Rotation 9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>Rotation 10</td>
<td>15</td>
<td>Rotation 10</td>
</tr>
<tr>
<td></td>
<td>Rotation 10</td>
<td>Rotation 10</td>
<td></td>
<td>Rotation 10</td>
<td>Rotation 10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>Rotation 11</td>
<td>22</td>
<td>Rotation 11</td>
</tr>
<tr>
<td></td>
<td>Rotation 11</td>
<td>Rotation 11</td>
<td></td>
<td>Rotation 11</td>
<td>Rotation 11</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>Rotation 12</td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotation 12</td>
<td>Rotation 12</td>
<td></td>
<td>Rotation 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
march 2018

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rotation 12</td>
<td>Rotation 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Rotation 13</td>
<td>Rotation 13</td>
<td>Rotation 13</td>
<td>Rotation 13</td>
<td>Rotation 13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Rotation 14</td>
<td>Rotation 14</td>
<td>Rotation 14</td>
<td>Rotation 14</td>
<td>Rotation 14</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Rotation 15</td>
<td>Rotation 15</td>
<td>Rotation 15</td>
<td>Rotation 15</td>
<td>Rotation 15</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Rotation 16</td>
<td>Rotation 16</td>
<td>Rotation 16</td>
<td>Rotation 16</td>
<td>Rotation 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotation 17</td>
<td>Rotation 17</td>
<td>Rotation 17</td>
<td>Rotation 17</td>
<td>Rotation 17</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Rotation 18</td>
<td>Rotation 18</td>
<td>Rotation 18</td>
<td>Rotation 18</td>
<td>Rotation 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td>Rotation 19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Rotation 20</td>
<td>Rotation 20</td>
<td>Rotation 20</td>
<td>Rotation 20</td>
<td>Rotation 20</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotation 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sentara RMH School of Medical Laboratory Science
Daily Class Time: Monday-Friday 9:00-2:30

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rotation 21</td>
<td>Rotation 21</td>
<td>Rotation 21</td>
<td>Rotation 21</td>
<td>Rotation 21</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>Rotation 22</td>
<td>Rotation 22</td>
<td>Rotation 22</td>
<td>Rotation 22</td>
<td>Rotation 22</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>Rotation 23</td>
<td>Rotation 23</td>
<td>Rotation 23</td>
<td>Rotation 23</td>
<td>Rotation 23</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>Rotation 24</td>
<td>Rotation 24</td>
<td>Rotation 24</td>
<td>Rotation 24</td>
<td>Rotation 24</td>
</tr>
</tbody>
</table>
| 27 | 28 | Memorial Day Holiday
No Class | Review | Review | Review | Notes: |
| | 29 | Review | Review | Review | Review | Notes: |
Sentara RMH School of Medical Laboratory Science
Daily Class Time: Monday-Friday 9:00-2:30

June 2018

- 1: Review
- 4: 10:00 Comprehensive Exam
- 6: 10:00 Graduation
CAUSES FOR DISMISSAL

(Reviewed 2/13/17)

1. Failure to maintain a grade point average of 70% in any subject, rotation or any form of evaluation.

2. Failure of two consecutive lecture tests in one subject or four quizzes in one subject.

3. One unsatisfactory clinical rotation test, evaluation, or practical.

4. Abusive or inconsiderate treatment of patients.

5. Falsification of application materials.

6. Excessive absenteeism and tardiness as addressed in the RMH rules and regulations.

7. Gross neglect of duty, insubordination, dishonesty or misappropriation of hospital property.

8. Incompetence, falsification of records, disorderly conduct, soliciting for tips.

10. Habits or state of health dangerous to the student, to other students, employees or to patients.

11. Alcohol and/or drug abuse-includes drinking or being drunk on the job.

13. Molesting employees or patients or conviction of drug abuse.

14. Cheating on any type of evaluation (tests, practical exams, or oral exams etc.)
15. Failure to pass the Comprehensive Exam with a 70%.

16. Failure to follow the rules and regulations of RMH and the school to include the Professional Dress Code.

17. Failure to follow the rules and instructions of the Student Lab resulting in a failing grade of less than 70% on two or more student labs.

18. Once dismissed from the program, a student will not be readmitted for any reason.

19. Students wanting information about their status should contact the school in writing with signature. The school will respond to the student in writing within two weeks of the request for information. Communication regarding dismissal should be in writing between the student and the school.

20. A violation of 2 or more Sentara Red Rules as listed on Wavenet; for example, misidentification of patients or reporting inaccurate results on a didactic or rotation practical exam.
Sentara RMH School of Medical Laboratory Science

LABORATORY GENERAL POLICIES

Appearance

Each employee represents Sentara RMH Medical Center and the Laboratory. The employee’s personal appearance and demeanor reflects on the Hospital and the Laboratory as well as themselves.

During work hours and at work sites, employee dress should be appropriate to the nature of the work site, the position and responsibilities of the employee.

Appropriate dress for females:
- Shirt/sweater and dress slacks or skirt or dress
- Slacks are defined as ankle length pants
- Skirts should be of appropriate length and should conform to appropriate business attire
- RMH approved scrub uniform for students is black

Appropriate dress for males:
- Shirt and dress slacks
- RMH approved scrub uniform for students is black

If undershirt is worn under scrub uniform, it must be white.

Anyone entering or working in the clinical area must comply with the shoe and hair guidelines.

Shoes should be comfortable; rubber-soled, and cover the foot. Leather or synthetic, fluid-impermeable material is required. Athletic shoes made of leather or vinyl, are the preferred footwear.

Long hair, shoulder length or longer, must be tied back or pinned up. Pinned up is defined so that if you lean forward, your hair does not fall forward.

For safety reasons, beards must be trimmed to one inch or less so that they do not interfere with one’s work.
Employee dress, that is not acceptable are jeans, including designer jeans, soiled uniforms and open toed sandals or shoes in the clinical area. All clothes must be in good repair. Clothes that are not permanent press must be pressed.

All staff must wear the appropriate protective equipment to assure adequate barriers to possible exposure. Fingernails should be no longer than one-quarter inch beyond the end of the finger. Earrings longer than one-inch, bracelets and other dangling jewelry and oversized rings should not be worn. Flowing scarves should not be worn. Cosmetics may not be applied in the work area.

Employee’s overall appearance including clothing, hair, beard, moustache, jewelry, perfume and make-up should not draw undue attention or comments. Appearance should be presentable for the work area, which includes co-workers, visitors and patients.

Non-compliance may result in being required by supervisor to leave work until dress complies with the above policies. It may result in disciplinary action if the problem is repetitive.

A shirt may be worn under the scrub with long sleeves. No sweatshirts, sweaters, or jackets with hoods outside the scrubs.

A white lab coat may be worn.
Sentara RMH School of Medical Laboratory Science

Policy/Procedure When Applied Experience Cannot be Guaranteed
(Revised 7/6/2016)

Selection of students will be limited annually to the number of slots available on clinical rotation.

Because of the large number of hospitals in the Sentara System, there should always be rotation slots to accommodate students for rotation should a disaster occur in one of the hospitals.

With regard to the didactic portion of the program, if the Sentara RMH School of Medical Laboratory Science would close, the lectures on file along with Power Points for the entire curriculum would be available to another Sentara Facility and their Lab departments. These certified medical laboratory scientists could complete the didactic portion for the remaining months until the current class had finished the program.

The following is a list of all the hospitals in the Sentara Healthcare System:

Sentara Albemarle Medical Center- Elizabeth City, NC
Sentara CarePlex Hospital- Hampton, VA
Sentara Halifax Regional Hospital- South Boston, VA
Sentara Leigh Hospital- Norfolk, VA
Sentara Martha Jefferson Hospital- Charlottesville, VA
Sentara Norfolk General Hospital- Norfolk, VA
Sentara Northern Virginia Medical Center- Woodbridge, VA
Sentara Obici Hospital- Suffolk, VA
Sentara Princess Anne Hospital- Virginia Beach, VA
Sentara RMH Medical Center- Harrisonburg, VA
Sentara Virginia Beach General Hospital- Virginia Beach, VA
Sentara Williamsburg Regional Medical Center- Williamsburg, VA

Further details of the didactic and rotation completion would be formulated if a closing of Sentara RMH School of Medical Laboratory Science should occur.

There is an affiliation agreement between Sentara RMH School of Medical Laboratory Science and all of the Sentara Hospitals.
In the event of schools closure or revocation of certification, the schools shall make provisions for transferring all official records of students to the council office, or secure location that will maintain the records permanently, notify all students of this location and how they may obtain official copies. The records transferred to the council office, or other depository, shall include the academic records of each student, which should include:

1. Academic transcripts showing the basis of admissions, transfer credits, courses, credit, grades, graduation authorization, and student name changes for each student;
2. As no financial aid is offered to the students, there will be no record of transcripts of financial aid;
3. Foreign student forms for foreign students;
4. Veterans Administration records for veterans;
5. Copies of certificates awarded;
6. One set of course descriptions for all courses offered by the school;
7. Copy of NAACLS accreditation during the years covered by transcripts.

The schools shall notify all enrolled students of the pending closure immediately, describing their financial obligations as well as their rights to a refund or adjustment, and provisions made for assistance toward completion of their academic programs, whether by the institution that is closing, or by contract with another institution or organization to teach out the educational programs.

This policy is in addition to the schools policy on “if applied experience cannot be guaranteed.”
School of Medical Laboratory Science

Results of the Program Outcome Measures

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification Pass Rate</td>
<td>100%</td>
</tr>
<tr>
<td>Graduation Rate</td>
<td>97.4%</td>
</tr>
<tr>
<td>Attrition Rate</td>
<td>2.6%</td>
</tr>
<tr>
<td>Placement Rate</td>
<td>97.8%</td>
</tr>
</tbody>
</table>

Outcome Measures as Per NAACLS Benchmark and Sentara RMH School of Medical Laboratory Science
Copies of the school’s Rules and Regulations are given to all students on the first day of class in the Student Handbook/Curriculum Guide.

The Sentara RMH School of Medical Laboratory Science is accredited by the National Accrediting Agency for Clinical Laboratory Sciences, NAACLS, Chicago, Illinois (773) 714-8880, www.naacls.org.

RULES AND REGULATIONS
(Revised 6/21/2017)

Testing and Grades

The grading system will consist of the following:

90-100 A
80-89 B
70-79 C
Below 70 = unacceptable grade

A minimum of 70% must be maintained in all courses. Below 70% is unacceptable performance.

All tests must be taken on the assigned day or a failing grade is recorded. No lecture test will be rescheduled to another day. Sometimes there may be more than one test on a given day. Quizzes are given daily even in classes when there is a test in another subject on the same day. This experience helps the student in developing time management skills.

Rotation Grades—Sentara RMH Medical Center and Sentara

The rotation grade will be calculated from the practical exam, written exam, and evaluation. The practical exam will be taken first and must be passed by the student before the student can progress on to the other forms of evaluation. The practical exam will consist of unknown samples that the student will analyze by various methods in the department. If the practical exam is not passed, the student may be terminated from the program or may be required to repeat all of the rotation or a portion of the rotation. Once the practical exam is passed, the written exam will be taken and must also be passed by the student before the student can progress in the program. Failure of the written exam may result in termination of the student or the student may be required to repeat a portion or the complete rotation. Upon completion of the practical and written exams and evaluation, the final rotation grade will be calculated as follows:
40% practical exam
40% written exam
20% evaluation

Lecture Grades

For each lecture course, all tests and quizzes will count 2/3 of the final grade, and the final exam for each course will count 1/3 of the final grade. The student lab grade will be averaged into the lecture grade for that subject equivalent to one test grade. For example, a student’s student lab grade for chemistry will count equivalent to one test grade in chemistry lecture. The same will hold true for microbiology, hematology and blood bank respectively.

If a student fails (below 70%) on one lecture test, he/she may be put on probation. If a second lecture test is below 70%, the student may be dismissed from the program. Failure of quizzes indicates that the student is experiencing a problem. Three or more quizzes below 70% may result in the placement of the student on probation. Once on probation, the failure of two additional quizzes may result in dismissal of the student. These quizzes do not have to be in consecutive order. All probation status will remain in effect for the entire duration of the course.

A student will not be permitted to graduate while on probation; therefore, all graduates must be in "good standing" to successfully complete the program. Probation status in two or more courses during the clinical year may result in dismissal of the student.

Complaint and Grievance Procedure (Academic and non-academic grievances will follow the same policy, and will be addressed in the same manner.)

Student complaints should be brought to the Program Director. If the complaint cannot be solved by the Program Director and the student, and it involves the entire class, then a class meeting will be held. The group will discuss the complaint and decide on a resolution that is acceptable to all concerned. Complaints will be addressed in a timely manner so that a resolution may be reached quickly with the satisfaction of everyone. Complaints will be handled within the framework of the Program and hospital policies. Respect for all involved is of utmost importance to the Program. If another department in the hospital is involved, the Program Director will contact the other department. It is felt that open communication will help to prevent any unhappiness from escalating into a complaint.

Students are encouraged to maintain open lines of communication with faculty. This will promote discussion of any problem that may arise. If for any reason, the student feels that they have been treated unfairly, they may proceed with the grievance procedure. This grievance procedure will apply to an academic and non-academic grievance. It is as follows:

1. The student will bring the charge in writing to the program director within two weeks of the action or occurrence.

2. A response will be made by the program director within two weeks.
3. If the student is not satisfied with the ruling of the program director, they may file a written complaint to the laboratory administrative director.

4. The laboratory administrative director will make a ruling on the complaint.

5. If the student is not satisfied, the grievance committee will be convened, at the written request of the student. The panel will be made up of seven members. These will include the program director, SRMH laboratory administrative director, a student from the current class, SRMH education program coordinator of MLS school, one member from the SRMH Human Resources Department, and one member of the faculty from one of the university affiliates of the SRMH School of Medical Laboratory Science (if possible, this member will be from the college the student attended). This committee will meet within two weeks of the written request from the student. The results of the grievance committee will be the final decision. The committee will give the final report within two weeks of the meeting to the student and any other parties involved. Waivers of the above stipulations may be granted if agreed to by all parties.

The student may contact the State Council of Higher Education as a last resort.

State Council of Higher Education for Virginia (SCHEV)
Private and Out-of-State Postsecondary Education
101 N. 14th Street
Richmond, VA 23219

Students will not be subjected to adverse actions by any school officials as a result of initiating a complaint.

Telephone

Personal use of the laboratory telephones is discouraged so that the lines may be kept open for laboratory business. If personal calls are necessary, the length of such calls should be limited.

Miscellaneous

All laboratory accidents are to be reported immediately to one of the following:
Program Director
Laboratory Administrative Director
One of the laboratory managers
An [Incident Report Sheet](#) will be completed and filed, and any necessary medical attention promptly given. It is imperative that all accidents, no matter how minor, be reported.

Students in the medical laboratory science program are responsible for observing and following all hospital policies. The student is encouraged to review the laboratory policy manual upon entrance into the program. A copy of the manual is located in each clinical section.
Library

The SRMH Library will provide up to 10 free interlibrary loan photocopies for students who are enrolled in a hospital-supported school. Thereafter, an $8.00 charge will be assessed per article.

Students are expected to make their own photocopies for articles held in the library. A fee of $.10 per page is assessed.

Students may check out books from the library.

Parking

Parking is available in the lot next to the building. Hang tags for the hospital will be provided to students on rotation.

Student Counseling

Confidential counseling assistance is available to students experiencing any personal problems. The Program staff will provide more information if requested. Confidentiality is maintained during all student-counseling sessions.

There is an open-door policy with the program director and the education program coordinator. Students may seek advice or counseling at any time throughout the year.

One formal counseling session with the program director and the education program coordinator will be scheduled. Additional formal sessions will be held if the student is experiencing problems.

If a student has concerns/problems within the didactic phase of the Program, the student should first discuss the matter with the respective instructor. If not satisfied with the response, the student may then contact the Program Director for further discussion.

After each rotation, the student will receive an evaluation completed by the department. This is an additional opportunity for the student to receive counseling when this evaluation is discussed between the Program Director and the student.

Faculty will be available 30 minutes after each class for academic and/or course advising to students. There are no placement services offered by the school.

Tuition

The tuition for the year is $4500.00 for all students regardless if that student pays tuition to a university. Tuition must be paid before classes begin in all cases. Tuition must be paid in full. There are no installment payments available. One fee for the year of $100.00 is collected when the student accepts a position in the school. The $100.00 fee is nonrefundable. Accepted students will be sent a list of required textbooks. These are purchased by the student and brought the first day of class. Scholarships may be available from several of the Sentara Hospitals to include SRMH and Norfolk. Scholarship amount may vary per location. The school does not participate in the federal student aid program.
Applications for scholarships may be given shortly before rotation begins. Interviews may be required in the application process for the Sentara scholarships. Not all rotation sites give scholarships.

Withdrawal Policy

A student may withdraw from the Program at any time. A completed transcript of grades is generated for each student at graduation. Transcripts are not generated for students who do not finish the program. The withdrawal/cancellation must be made during the three (3) day cancellation period.

Substance Abuse Policy

SRMH Medical Center has a strong commitment to its employees and patients to provide a safe work place and to establish programs promoting high standard of employee health and wellness. The Hospital’s goal will continue to be one of establishing and maintaining a work environment that is free from: (A) the effects of illegal drugs, (B) the effects of alcohol, and (C) the abuse of legal drugs and substances. The Hospital recognizes that serious involvement with drugs or alcohol eventually takes a toll on an individual, family and the organization. Employees and students having a drug or alcohol problem are strongly encouraged to seek assistance through the Employee Assistance Program.

SPECIAL INSTRUCTION;

1. It is the student who bears primary responsibility for his/her performance and taking any action or treatment necessary to maintain acceptable performance. Students whose performance or attendance becomes substandard because of substance use or abuse or any other reason, will not be exempt from corrective action.

2. The Hospital reserves the right to search employee’s personal belongings for Alcohol or drugs under circumstances deemed appropriate by designated Hospital officials.

3. A student who comes forward to seek assistance for drug-related problems before selected for “reasonable suspicion” or “random screening, or for alcohol-related problems before being selected for “reasonable cause” screening, will be offered EAP assistance.

4. A student who has not come forward to seek assistance before randomly selected and who then tests positive for drugs without medical justification will be subject to disciplinary action up to and including dismissal. A student who refuses to have a drug or alcohol screen for “reasonable suspicion” or “random screening” or “after-care” monitoring will be subject to dismissal.

5. As a precondition to beginning the medical technology program, students who have received acceptance will be required to submit to and pass drug screening, along with their medical physical. Any person who tests “positive” for drugs without medical justification will be considered medically unqualified and will be dismissed from the program. Re-application will be considered for future classes.
6. When the Program Director, Education Program Coordinator, Director and/or one of the managers of the Laboratory, Employee Health Nurse or EAP personnel have reasonable suspicion that drug or alcohol abuse is occurring, they may direct the student to the RMH Corporate Health or Emergency Department for a medical evaluation (which may only be a drug test). The student will receive an academic suspension until the test results are returned. At that time, if the test results are negative, the student will be reinstated and their student record will be expunged of the incident. Should the results be positive, the student will be dismissed from the Program immediately.

7. Students may be subject to random screening in a manner similar to that for employees. If results of the random drug screen are positive, the student will be dismissed from the program immediately.

Attendance

During lecture, classes will start at 9:00 am or 8:00 am and finish at 2:30 pm or later. Time between lectures is to be spent studying, for breaks, and for lunch. The student is to remain in the area during these non-lecture hours.

The school office/director must be notified for late or absence. If this is not done, the absence is unexcused. Contact must be made by the absent student to the school/director and not through another student. (School/director phone: 540-564-7232) Two unexcused absences may result in withdrawal of the student from the program.

During rotation, the hours vary per rotation and hospital.

Students are allowed up to five sick days for the year. These days are to be taken for illnesses and are **NOT** for personal days. Excess days will have to be made up. Time taken for emergencies will be subtracted from the sick time. Two days of unexcused absences may be cause for dismissal. An unexcused absence is when the student does not notify the program director of the absence prior to the absence. **During rotation both the program director and the department must be notified. If a student is absent because of illness for two or more days, a doctor’s excuse must accompany the student on the first day back to class.**

Days requested off immediately prior or immediately after the Thanksgiving or Christmas or any holiday will not be approved.

Student Employment and Service Work Policy

Understanding that employment during the clinical year is sometimes a necessity, such employment is left up to the discretion of the individual student. When considering this option, the student should remember that the clinical program is a minimum of 40 hours each week, not including preparation and study time outside of the clinical setting. While outside employment is a student decision, the Program Director may counsel the student should academic work begin to decline.

Following completion of the first clinical rotation, students may be eligible to apply to work weekends, evenings or holidays according to hospital employment policies, based on position availability. This
employment is an option to the student and will be compensated for monetarily. When students work for pay, they are responsible to the hospital as any other employee and this work has no connection to the requirements of the student by the School of Medical Laboratory Science. Again, work is contingent upon position availability within the laboratory, and will be handled by the School of Medical Laboratory Science as any other form of employment would be handled.

Service work by students in clinical settings outside of academic hours must be noncompulsory.

Students may not be substituted for regular staff during their student experiences.

Health Care

Each student must have and is responsible for obtaining an adequate health insurance policy during the clinical year. Evidence of this health insurance coverage must be demonstrated upon entering the Program. Any services administered as an inpatient are the responsibility of the student.

Emergency Room services and other hospital services are available to students for charges as rendered in the same manner as employees. Students injured as a result of a laboratory or hospital accident will be taken to the hospital emergency room for any necessary treatment. The student will be responsible for any expenses that are charged by the emergency room for such a visit.

Prior to beginning the clinical program, students are required to have a medical physical and drug screen. This requirement is to be scheduled and paid by the student.

Liability Insurance

As of the year 2000, the SRMH Medical Center will cover students with liability insurance while they are in class.

Certificate of Completion

The Program awards a certificate upon successful completion of all course requirements. *The granting of the certificate is not contingent upon the student’s passing any type of external certification or licensing examination.* In addition, an official grade transcript is provided to the student. For 3+1 students, grade transcripts will be forwarded to their university or college. It is recommended that students receive a total of 30+ semester credit hours for their year of attendance by their respective university. Each credit hour correlates approximately to 8 clock hours for lecture. Each credit hour correlates approximately to 32.5 clock hours for the practicum portion.

Transcripts of grades include the following:
<table>
<thead>
<tr>
<th>Course</th>
<th>Grade</th>
<th>Suggested Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 403 Clinical Chemistry</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MT 503 Clinical Chemistry Practicum</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MT 400 Clinical Hematology (Includes Hemostasis)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MT 500 Clinical Hematology Practicum</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>MT 402 Immunohematology (Blood Bank)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MT 502 Immunohematology Practicum</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MT 405 Microbiology</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MT 505 Microbiology Practicum</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MT 412 & 506 Computer Science and Laboratory Skills</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MT 410 Orientation (Safety and Quality Assurance)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MT 401 Clinical Immunology</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MT 404 Urinalysis and Body Fluids</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MT 408 Clinical Laboratory Supervision and Management</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MT 409 Education and Research Methods and Design</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Leave of Absence (Voluntary Withdrawal)

In reference to voluntary withdrawal or leave of absence, re-admission to the program is contingent upon past records and space availability. Re-admission of students dismissed for academic or disciplinary reasons would not be considered unless such dismissal was due to illness or other correctable circumstances. Students have the right to appeal.

It is recognized that interruptions may occur for various acceptable reasons, such as an accident, illness, or pregnancy. Each request for interruption of the program will be considered on an individual basis. When a subject has been completed in its entirety, including both lecture and clinical rotation, credit will not be lost by interruption of the program. Partial credit would be given if at least three months of the program had been completed. Re-entrance for such interrupted training is dependent on space availability, academic standing at the time of the interruption, and length of interruption interval. Interrupted training must be reinstated within a two-year period.

A student who does not resume attendance on the return date following a leave of absence will be terminated by the program.

Student Safety

All students must follow the safety policies of the hospital and school. Student safety is of the utmost concern for the hospital and school, and precautions to protect that safety will be maintained. Safety policies required by CAP and JACHO and other accrediting agencies will be followed by the hospital and school.

Professional Dress Code

Black scrubs must be worn at all times according to the SRMH dress policy. Scrub colors for rotation at other Sentara hospitals may vary. No flip-flops or open-toed shoes may be worn. If dress is not appropriate, the student will be asked to leave and not return until appropriate dress is worn. Any infractions will be noted in the student’s permanent record.
Faculty

Sue Lawton, MLS(ASCP)CM, M.A., M.S.
Program Director, Sentara RMH School of Medical Laboratory Science

Cyndee Lowe, MLS(ASCP)CM, B.S.
Education Program Coordinator, Sentara RMH School of Medical Laboratory Science

Abigail Blosser, MLS(ASCP)CM, B.S.
Instructor, Sentara RMH School of Medical Laboratory Science

Sentara RMH Medical Center Practicum Instructors

Candi Lambert, MT(ASCP), B.S.
Clinical Instructor in Blood Bank and Hematology

Karen VanSant, MT(ASCP), B.S.
Clinical Instructor in Chemistry

Sentara Norfolk General Hospital Practicum Instructors

Jessica Linhardt, MLS(ASCP), B.S.
Labaratory Education Coordinator

Louise Midland, MT(ASCP), B.S.
Clinical Instructor in Blood Bank

Ethelind Austria, MT(ASCP), B.S.
Clinical Instructor in Chemistry

Jovi Sambo, MT(ASCP), B.S.
Clinical Instructor in Hematology

Darlene Estee, MT(ASCP), B.S.
Clinical Instructor in Microbiology

Sentara Halifax Regional Hospital Practicum Instructors

Tabitha McGhee, MT(AMT), M.S.
Clinical Instructor in Blood Bank

Kay Newcomb, MT(ASCP), B.S.
Clinical Instructor in Chemistry
Jennifer Boswell
Clinical Instructor in Hematology, Coag, and Urinalysis

Amy Wilkerson, MT(ASCP), B.S.
Clinical Instructor in Microbiology

Monty Epps, MT(ASCP), B.S.
Clinical Instructor in Phlebotomy

Martha Jefferson Hospital Practicum Instructors

Matthew Gardner, MLT(ASCP)
Clinical Instructor in Blood Bank

Tina Murphy, MLT(ASCP)
Clinical Instructor in Chemistry

Debora House, MT(ASCP), B.S.
Clinical Instructor in Hematology

Shirley Jenkins, MT(ASCP), B.S.
Clinical Instructor in Microbiology

Gregory McAdam, MT(ASCP), B.S.
Clinical Instructor in Coagulation, Serology, and Urinalysis

Sentara Albemarle Medical Center Practicum Instructors

Cassandra Fogg, MT(ASCP), B.S.
Clinical Instructor in Blood Bank

Sabrina Butts, MT(ASCP), B.S.
Clinical Instructor in Chemistry

Steven Comoroski, MT.H.(ASCP), B.S.
Clinical Instructor in Hematology

Mary Banks, MT(ASCP), B.S.
Clinical Instructor in Microbiology

Sentara Northern Virginia Medical Center Practicum Instructors

Setareh Mohmand, MT(ASCP)
Clinical Instructor in Blood Bank
David Staie, MT(AMT), B.S.
Clinical Instructor in Chemistry

Kristy Glass, MT(ASCP)
Clinical Instructor in Hematology

Debbie Dawson, MT(ASCP)
Clinical Instructor in Microbiology
The progress of each student will be communicated to them at the completion of each didactic and rotation/practicum course. This will be documented on a form for counseling and notification of progress to the student. This form will be placed in the students’ permanent file. Official transcripts will only be generated at the completion of the entire year.
MISSION STATEMENT
(Revised 2/13/2017)

It is the mission of the Sentara RMH School of Medical Laboratory Science to graduate beginning medical laboratory scientists with the skills, knowledge, motivation, and insight to excel in the practice of laboratory medicine, and to pass national certification examinations. These graduates will be motivated to continue their education, and to become our future educators, leaders, innovators and managers in the laboratory. The school will remain on the cutting edge of laboratory education providing the students with the curriculum that is current, safety conscious, and responsive to the dynamic health care environment.

The school’s purpose includes an emphasis of 98% on instruction, 2% on research in the form of lectures during the education course, and 0% on public service.
Sentara RMH School of Medical Laboratory Science

Program Goals
(Revised 2/13/2017)

• To provide 3+1 and 4+1 students in medical laboratory science in a safe environment with the theoretical background and practical laboratory skills required to work in any specialty of the medical laboratory.

• To instill in students professional integrity and pride.

• To educate students with a thorough knowledge of the clinical correlation of laboratory test results and disease.

• To provide sufficient background material in medicine and physiology for an intelligent understanding of diagnostic work.

• To instill in students an understanding of the importance of their work as scientists on a medical team whose sole purpose is the patient.

• To maintain the standards of the profession of medical laboratory science.

• To prepare students to successfully pass the Board of Certification exam.

• To graduate laboratory scientists with a strong education and laboratory management background for a future role in education and management leadership.
School of Medical Laboratory Science
(Revised 2/13/2017)

Student Acceptance
Students are accepted by letter. There is no application deadline.

Transfer Credit
The school does not give credit for work completed at other institutions. Credits earned at the school are transferable to another institution at the sole discretion of the accepting institution.
Sentara RMH School of Medical Laboratory Science

COMPETENCY STATEMENTS*
(Revised 3/9/2017)

The following competencies are for all the areas of the laboratory to include chemistry, hematology (includes coagulation), microbiology (parasitology, mycology and virology), blood bank, immunology, body fluids etc. Measurement of all competencies is the minimum of 70% on all evaluation mechanisms to include written tests, laboratory practicals, oral exams, student lab worksheets and rotation evaluations.

The Sentara RMH Graduate Medical Laboratory Scientist:

APPLIES KNOWLEDGE OF THEORY AND PRINCIPLES RELATED TO:
1. Anatomy (body fluids)
2. Biochemistry (Chemistry and Hematology)
3. Genetics, Molecular Biology, Molecular Diagnostics, and Microbiology (Parasitology, Mycology and Virology)
4. Growth characteristics/diagnostic and infective forms (microbiology)
5. Immunology, Immunohematology, Education
6. Physiology (Body fluids, Chemistry, Hematology, Immunology) and Hematology (includes coagulation)
7. Fundamental biological characteristics related to laboratory testing and medical terminology
8. Principles of performing basic and special laboratory procedures
9. Theory and practice related to laboratory operations, management, safety, research design to include practice, and education techniques.
10. Standard operating procedures and Laboratory Information Systems
11. Sources of error in laboratory testing
12. Data security/patient confidentiality and theory and practice related to laboratory operations (management/safety/education/R&D)

SELECTS APPROPRIATE:
13. Type of sample and method for test requested
14. Reagents/media/blood products
15. Controls for test performed and course of action
16. Instruments to perform requested test and quality control procedures
17. Routine/special procedures to verify test results
18. Instruments for new laboratory procedures

PREPARES/PROCESSES:
19. Specimens
20. Reagents/media/blood products
21. Controls
22. Equipment and instruments

23. CALCULATES RESULTS:

ASSESS TEST RESULTS BY CORRELATING LABORATORY DATA WITH:
24. Quality control data
25. Clinical or other laboratory data
26. Results obtained by alternate methodologies
27. Physiologic processes to validate test results and procedures

EVALUATES LABORATORY DATA TO:
28. Recognize related disease states
29. Make identifications
30. Resolve possible inconsistent results/sources of errors
31. Check for procedural/technical problems
32. Determine appropriate instrument adjustments
33. Take corrective action
34. Assess test for procedural validity/accuracy
35. Recognize and report abnormal test results and/or the need for additional testing
36. Determine alternate test methods
37. Establish new laboratory operational/testing procedures
38. Establish reference range criteria
39. Establish new testing procedures for alternate methods
40. Assure personnel safety

DEMONSTRATES BEHAVIOR APPROPRIATE FOR A CLINICAL LABORATORY SCIENTIST WITH REGARD TO:
41. Ethics and professional integrity
42. HIPPA regulations and patients
43. Professionalism
44. Continued professional career growth, development and maintenance
45. Laboratory safety
EVALUATES:
46. appropriate actions and methods
47. corrective actions
48. patient-related requirements
49. possible sources of error or inconsistencies
50. quality control procedures
51. specimen-related requirements

*Original from ASCP, Medical Technologist Competencies
School of Medical Laboratory Science
Harrisonburg, Virginia

ESSENTIAL FUNCTIONS
(Revised 2/13/2017)

The following essential functions are required for admission to the program:

1. Manual Dexterity: Ability to use hand(s) or prosthetic devices with coordination.
2. Fine Motor: Ability to manipulate small objects with fingertips or adaptive devices.
3. Mobility: Ability to maneuver in the laboratory and around instruments and in patients care settings.
4. Vision: Ability to distinguish red, yellow, and blue colors; distinguish clear from cloudy, and distinguish objects through a microscope.
5. Speech: Ability to verbally communicate understandably in English.
6. Hearing: Ability to adapt with assistive devices (i.e., phone receivers, hearing aid, etc.)
7. Writing: Ability to communicate effectively in the written form in English.
8. Reading: Ability to read, understand and follow directions printed in English.
9. Psychological Stability: Ability to demonstrate the emotional health required for full utilization of the applicant’s intellectual abilities. Must be able to recognize emergency situations and take the appropriate actions.

Students entering the Sentara RMH School of Medical Laboratory Science must be able to sign the following statement:

I ___________________ (Name) attest that I have read and understand the essential functions of the Sentara RMH School of Medical Laboratory Science and I believe that I can, and am prepared to, meet these requirements.
I understand that if I cheat on an exam, practical or any type of evaluation instrument, that I will be dismissed from the school. I have read the causes for dismissal from the program, and agree to abide by the Sentara RMH Rules and I agree to abide by the honor code of the Sentara RMH School of Medical Laboratory Science, and regulations while I am a student in the school.

I have read the information for progression through the program found in the Curriculum Guide. I understand the necessary requirements for progression in and completion of the program.

By signing this document I attest to the above stipulations.
School of Medical Laboratory Science
Harrisonburg, Virginia

Health and Safety Policy Signature Sheet
(Revised 2/13/2017)

I acknowledge that I have received instructions on health and safety during my hospital orientation class and Sentara RMH School of Medical Laboratory Science Orientation course.

I understand this material and agree to adhere to the health and safety policies to include biohazard and safety training. Additional safety training will be in the School of Medical Laboratory Science Student Lab and during clinical rotation.

__ _________________________
Student Signature Date
School of Medical Laboratory Science

Confirmation of Knowledge of Rules and Regulations
(Created 2/22/2017)

If I am accepted by the Sentara RMH School of Medical Laboratory Science, I agree to abide by the code of ethics and the general rules and policies of the school and the hospital, and I am responsible for my conduct at all times. In signing below, I also affirm that to the best of my knowledge, the application information is correct and accurate.

__ ________________
Signature Date
The Sentara RMH School of Medical Laboratory Science will follow the cancellations of classes because of snow and ice or hazardous driving conditions the same as James Madison University of Harrisonburg, Virginia. When you hear the announcement of closing James Madison University classes, you will know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closing due to bad weather and does not apply to any other situation. Announcements are given on radio and television in the case of bad weather. If there is a 2 hour delay because of weather at JMU, the same will apply to Sentara RMH classes.

Students on rotation at Sentara Hospitals in the Norfolk area will follow the cancellation of classes because of snow and ice or hazardous driving conditions the same as Old Dominion University. When you hear the announcement of closing at ODU, you know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closings due to bad weather and does not apply to any other situation. If there is a 2 hour delay because of weather at ODU, the same will apply to Sentara RMH classes.

Students on rotation at Sentara Hospitals in the Halifax area will follow the cancellation of classes because of snow and ice or hazardous driving conditions the same as Southside Virginia Community College. When you hear the announcement of closing at SVCC, you know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closings
due to bad weather and does not apply to any other situation. If there is a 2 hour delay because of weather at SVCC, the same will apply to Sentara RMH classes.

Students on rotation at Sentara Hospitals in the Charlottesville area will follow the cancellation of classes because of snow and ice or hazardous driving conditions the same as the University of Virginia. When you hear the announcement of closing at UVA, you know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closings due to bad weather and does not apply to any other situation. If there is a 2 hour delay because of weather at UVA, the same will apply to Sentara RMH classes.

Students on rotation at Sentara Hospitals in the Woodbridge area will follow the cancellation of classes because of snow and ice or hazardous driving conditions the same as George Mason University. When you hear the announcement of closing at GMU, you know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closings due to bad weather and does not apply to any other situation. If there is a 2 hour delay because of weather at GMU, the same will apply to Sentara RMH classes.

Students on rotation at Sentara Hospitals in the Elizabeth City area will follow the cancellation of classes because of snow and ice or hazardous driving conditions the same as Elizabeth City Sate University. When you hear the announcement of closing at ECSU, you know that Sentara RMH School of Medical Laboratory Science is also closed. This only applies to closings due to bad weather and does not apply to any other situation. If there is a 2 hour delay because of weather at ECSU, the same will apply to Sentara RMH classes.
School of Medical Laboratory Science

Refund Policy
(Revised 2/13/2017)

If a student withdraws from the program, a refund may be requested. Notice of withdrawal should be submitted in writing to the Program Director of the School of Medical Laboratory Science. (This refund policy applies to the $100 deposit and $4,500 tuition).

The refund policy is as follows:

A. A student who enters the school but withdraws or is terminated during the first quartile (25%) of the program shall be entitled to a minimum refund amounting to 75% of the cost of the program.
B. A student who withdraws or is terminated during the second quartile (more than 25%, but less than 50%) of the program shall be entitled to a minimum refund amounting to 50% of the cost of the program.
C. A student who withdraws or is terminated during the third quartile (more than 50%, but less than 75%) of the program shall be entitled to a minimum refund amounting to 25% of the cost of the program.
D. A student who withdraws after completing more than three quartiles (75%) of the program shall not be entitled to a refund.

A student applicant may cancel by written notice, their enrollment at any time prior to the first class day of the session for which application was made. When cancellation is requested under these circumstances, the school will refund all tuition paid by student, less a maximum tuition fee of $100.00. A student applicant will be considered a student the first day of class.
Electronic Devices Policy

(During an Exam, Practical, and Any Form of Evaluation)

- Only non-programmable calculators may be brought to the test room
- No writing materials will be allowed
- Cell phones will not be permitted in the examination room
- Violations will result in a failing grade on the exam, practical, and any form of evaluation
- No personal belongings to include hats, scarves, gloves, large jewelry or other accessories are allowed
- No educational, test preparation or study materials will be allowed
- No cell/mobile/smart phones, smart watches, MP3 players, fitness bands, pagers, jump drives, cameras or any other electronic devices will be allowed
- No weapons of any kind will be allowed
Late Policy
(Revised 2/14/2017)

Late is defined as being one minute past the time that the rotation begins. For example, if a rotation begins at 8:00 AM, 8:01 is defined as late.

For students, one day late per rotation is considered acceptable performance. Two or more days late per rotation will be considered excessive and should be reflected in the student’s evaluation from that department. Three or more days late per rotation will be considered tardiness and may be reason to put a student on probation. Five or more days late per rotation is unacceptable, and may be cause for dismissal. Extenuating circumstances such as emergencies or car trouble will be evaluated on a case-by-case basis.

The same rules apply for the lecture and rotation portions of the program. The length of time given for one rotation is a six-week period. These rules would then be applied to any given six-week period of time.

Students will be withdrawn from the program after missing 14 calendar days (including weekends & holidays) after the student’s last date of attendance.

Make-up work due to absences during the didactic portion of the program: it is the student’s responsibility to obtain lecture notes from another student. Days in excess of 5 per year will require that the student does not graduate on time and must come back to the school for attendance on the number of days missed in excess of the 5 acceptable days. Days missed on rotation must be made up on days designated by the department supervisor in the missed department.

Students who have unsatisfactory attendance will be dismissed from the program. A student dismissed because of unsatisfactory attendance will not be readmitted to the program.
School of Medical Laboratory Science
(Revised 2/14/2017)

Library Resources

Virginia Funkhouser Health Sciences Library / RMH Healthcare
2010 Health Campus Drive
Harrisonburg, VA 22801

540-689-1777 phone
500-689-1770 fax
RMH_RMHLibrary@sentara.com

8:00AM – 4:30PM Monday – Friday

2 FTE professional staff: George L. Curran III, MLS
Librarian
38 years post-degree professional experience in health sciences libraries; at RMH since 2007

Megan D. Khamphavong, MSLS
Librarian
2 years post-degree professional experience in health sciences libraries; at RMH since 2007

Facility:
1,400 sq. ft.
Opened in May, 2010
Seating for 11 adults (8 study carrels)
6 public Internet terminals and 1 public PC
1 Xerox WorkCentre BookMark 40, manual feed photocopier / networked printer / scanner
1 networked HP LaserJet 4250n printer

Collections & Services: 5,000+ resource titles, of which
• ~4,000 are clinical, including 22 anatomic models
 o 25 specific texts and/or anatomic models are indexed as related to histopathology or anatomy & histology
 o 55 specific texts are indexed as related to pathology or pathophysiology
• ~500 are business administration / leadership & governance
• ~500 are training & development (mostly audiovisuals)

3000+ titles of print and electronic journal subscriptions
• with subject specific titles that include the following areas related to clinical laboratory science:
 o ~7 in anatomy
 o ~40 in cytology
 o ~3 in histocytochemistry
 o ~8 in laboratory techniques and procedures
 o ~46 in microbiology
 o ~3 in microscopy
 o ~4 in mycology
 o ~7 in parasitology
 o ~22 in pathology
 o ~39 in physiology
 o ~5 in virology

20+ research and reference databases, plus specialty search tools
• which include the following EBSCOhost databases
 o Biomedical Reference Collection: Comprehensive
 o CINAHL Plus with Full Text
 o Cochrane Collection Plus
 o DynaMed
 o GreenFile
 o Health Business Elite
 o HEED: Health Economic Evaluations Database
 o International Pharmaceutical Abstracts
 o LISTA
 o MEDLINE with Full Text
 o Nursing Reference Center
 o Nursing and Allied Health Collection: Comprehensive
 o PsycEXTRA
 o Psychology and Behavioral Sciences Collection
 o Scientific & medical ART Image base (SMART)
• EHIS (EBSCOhost Integrated Search), a federated search engine
• A-to-Z, a unified and searchable list of electronic book and journal title links

Genie, an Inmagic electronic integrated library system that includes
• an electronic, searchable web-based catalog that documents the 5,000+ resources in the VFHSL’s collection
• a clientele database
• an interlibrary loan database
• a serials management database
• a purchasing management database

Consolidated acquisitions for information resources across 100+ departments within RMH Healthcare and RMG

Interlibrary loan and article copy services, including
• membership and participation in the National Network of Libraries of Medicine

Mediated literature searching and individual, as well as group training offered in search techniques
Students who demonstrate outstanding achievement while on rotation may advance to the next rotation (eliminate all or a portion of a rotation) by meeting the following criteria:

1. Pass a rotation practical, evaluation and written exam with a grade of “C” or better

2. Meet all objectives including the cognitive, affective, and psychomotor learning domains for that rotation.

3. Must have completed prior clinical laboratory experience in that section for two years minimum under the supervision of a certified pathologist within the last five years.

4. Must have the recommendation of the program director and the lab department manager before eliminating one or part of a rotation.
School of Medical Laboratory Science

Policy on Student Repeating the Entire Year

(Reviewed 2/14/2017)

If a student does poorly in the program (below 70%) and has an extenuating circumstance preventing studying and the problem can be corrected, the student may be allowed to repeat the entire year of study.

An example might be that a student had a baby, and had no one to care for the baby. This prevented the student from studying. Then arrangements could be made to have a family member care for the baby. This allowed the student time to study.

There would also have to be an available rotation site for the student.

If these circumstances are met, the student may be allowed to repeat the entire year.

All the faculty members of both schools would have to be in agreement of the decision (100%). A vote would be taken before the policy would be put into effect.
Students will be able to make one deferral to another class one time only. Additional deferrals to another class will require going through the entire admissions process again. This refers to changing the class entry into the program from June to January or January to June or June of one year to June of the next year.
Understanding that employment during the clinical year is sometimes a necessity, such employment is left up to the discretion of the individual student. When considering this option, the student should remember that the clinical program is a minimum of 40 hours each week, not including preparation and study time outside of the clinical setting. While outside employment is a student decision, the Program Director may counsel the student should academic work begin to decline.

Following completion of the first clinical rotation, students may be eligible to apply to work weekends, evenings or holidays according to hospital employment policies, based on position availability. This employment is an option to the student, and compensation will be monetary. When students work for pay, they are responsible to the hospital, as any other employee, and this work has no connection to the requirements of the student by the School of Medical Laboratory Science. Again, work is contingent upon position availability within the laboratory, and will be handled by the School of Medical Laboratory Science as any other form of employment would be handled.

Service work by students in clinical settings outside of academic hours must be noncompulsory.

Students may not be substituted for regular staff during their student experiences.
Students may be allowed to perform laboratory test procedures under qualified supervision only after completing the Competency Check-Lists and Proficiency Check-Lists. Qualified supervision defines an individual who has certification as a laboratory professional.

The Sentara RMH School of Medical Laboratory Science supervises experiences by qualified personnel, for example, an ASCP certified MLS.

The daily student lab is executed by the MLS Education Program Coordinator who is a certified ASCP MLS.

Rotation Competencies are taught by the clinical site coordinator or ASCP MLS certified lab staff. All procedures performed by students are supervised and follow the protocols of the rotation site.

Competency check-sheets must be completed and initialed by the certified instructor for rotation. These are put into the students’ permanent file.
School of Medical Laboratory Science
(Revised 2/14/2017)

Outcome Measures

The school does the following to evaluate and improve the program success to be consistent with the mission of the school:

1. Monitor and report pass rate on ASCP Certification Exam.

2. Monitor placement rates of graduates.

4. Send out questionnaires to:
 - Students
 - Graduates
 - Faculty
 - Employers
 - Advisory Committee

5. Monitor sub-scores on BOC Exam.

6. Monitor graduation rate for each class.
The selection of faculty for the Sentara RMH School of Medical Laboratory Science is based on the following criteria:

1. Interest in education
2. Teaching ability
3. Two years of medical technology/clinical laboratory scientist experience
4. Certification - MT(ASCP), preferred MLS(ASCP)CM, education, and continuing education

In selection of faculty, the Sentara RMH School of Medical Laboratory Science does not discriminate on the grounds of race, color, religion, national origin, sex, age, marital status, sexual orientation, family responsibilities, or political affiliation.

It is recommended that faculty have a minimum of a B.S. degree (Master’s Degree preferred) and national certification MT (ASCP), with MLS (ASCP)CM preferred.
1. **Counseling:** Confidential counseling assistance is available to students experiencing any personal problems. The Program staff will provide more information if requested. Confidentiality is maintained during all student-counseling sessions.

There is an open-door policy with the program director and the education program coordinator. Students may seek advice or counseling at any time throughout the year.

One formal counseling session with the program director and the education program coordinator will be scheduled. Additional formal sessions will be held if the student is experiencing problems.

If a student has concerns/problems within the didactic phase of the Program, the student should first discuss the matter with the respective instructor. If not satisfied with the response, the student may then contact the Program Director for further discussion.

After each rotation, the student will receive an evaluation completed by the department. This is an additional opportunity for the student to receive counseling when this evaluation is discussed between the Program Director and the student.

2. **Complaints:** Student complaints should be brought to the Program Director. If the complaint cannot be solved by the Program Director and the student, and it involves the entire class, then a class meeting will be held. The group will discuss the complaint and decide on a resolution that is acceptable to all concerned. Complaints will be addressed in a timely manner so that a resolution may be reached quickly with the satisfaction of everyone. Complaints will be handled within the framework of the Program and hospital policies. Respect for all involved is of utmost importance to the Program. If another department in the hospital is involved, the Program Director will contact the other department. It is felt that open communication will help to prevent any unhappiness from escalating into a complaint.

3. **Respect:** Students have the right to respect from the Program Director, all instructors and fellow students.

4. **Leave of absence:** It is recognized that interruptions may occur for various acceptable reasons, such as an accident, illness, or pregnancy. Each request for interruption of the program will be considered on an individual basis. When a subject has been completed in its entirety, including both lecture and clinical rotation, credit will not be lost by interruption of the program. Partial credit would be given.
if at least three months of the program had been completed. Re-entrance for such interrupted training is dependent on space availability, academic standing at the time of the interruption, and length of interruption interval. Interrupted training must be reinstated within a two-year period.

5. **Voluntary Withdrawal:** A student may withdraw from the Program at any time.

6. **Safety:** Student safety is of the utmost concern for the hospital and school, and precautions to protect that safety will be maintained. Safety policies required by CAP and DNV and other accrediting agencies will be followed by the hospital and school.

7. **Laboratory work during clinical rotation:** Students may not be substituted for regular staff during their student experiences.

8. **Library Use:** The SRMH Library will provide up to 10 free interlibrary loan photocopies for students who are enrolled in the Program. Thereafter, an $8.00 charge will be assessed per article. Students may check out books from the library.

9. **Achievement:** Students who demonstrate outstanding achievement while on rotation may advance to the next rotation (eliminate all or a portion of a rotation) by meeting the following criteria:
 a. Pass a rotation practical, evaluation and written exam with a grade of “C” or better.
 b. Meet all objectives including the cognitive, affective and psychomotor learning domains for that rotation.
 c. Must have completed prior clinical laboratory experience in that section for two years minimum under the supervision of a certified pathologist within the last five years.
 d. Must have the recommendation of the program director and the lab department manager before eliminating one or part of a rotation.
Student Responsibilities: The student will demonstrate the following affective, professional and ethical behavior:

1. Demonstrate an effort to achieve professional excellence by showing initiative to do extra tasks and show a willingness to complete unsolicited tasks.

2. Prepare for daily class assignments in an organized fashion and participate in class discussions (volunteers in class to answer questions and actively discuss class issues). Does not argue with the instructor or solicit other students to argue with the instructor. Lack of preparation for class may be demonstrated in failing quiz grades.

3. Accepts and acts on advice from instructors

4. Assumes responsibility for behavior by following rules and policies. For example, follows the dress code and rules of the classroom.

5. Displays confidence, yet recognizes limitations of being a student.

6. Acts in a professional manner and maintains patient confidentiality according to HIPPA rules.

7. Works well in the School of Medical Laboratory Science as a team member with the other students and instructors. Contributes to the initiatives at hand in a positive manner.

8. Demonstrates respect to fellow students as well as instructors.

9. Reports to class on time and is present on all days as assigned.

10. Demonstrates hospitality standards of the profession and hospital to all students and instructors. Shows courtesy to other students and instructors similar to the hospitality they would show a guest in their home.
Orientation Course—Professionalism & Ethics ½ of Grade

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>95%</th>
<th>85%</th>
<th>75%</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exhibits effort to achieve professional excellence (initiative)</td>
<td>No instances of lack of initiative or willingness to do extra tasks</td>
<td>No more than 1 instance of lack of initiative or willingness to do extra tasks</td>
<td>No more than 2 instances of lack of initiative or willingness to do extra tasks</td>
<td>3 or more instances of lack of initiative or willingness to do extra tasks</td>
</tr>
<tr>
<td></td>
<td>Several instances of willingness to complete unsolicited tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Prepares for daily class assignments in an organized, timely fashion and participates in class discussions (volunteers to answer questions & actively discusses class issues)</td>
<td>No instances of being unprepared or disorganized in daily class or lack of class participation</td>
<td>One instance of being unprepared or disorganized in class & lack of class participation</td>
<td>Two instances of being unprepared or disorganized in class & lack of class participation</td>
<td>Three or more instances of being unprepared or disorganized in class & lack of class participation</td>
</tr>
<tr>
<td>3. Accepts and acts on advice given by instructors</td>
<td>No instances of failing to accept and act on advice from instructors</td>
<td></td>
<td>One instance of failing to accept and act on advice from instructors</td>
<td>Two or more instances of failing to accept and act on advice from instructors</td>
</tr>
<tr>
<td>4. Assumes responsibility for behavior by following rules and policies</td>
<td>No instances of failure to follow rules and policies</td>
<td></td>
<td>One instance of failure to follow rules and policies</td>
<td>Two or more instances of failure to follow rules and policies</td>
</tr>
<tr>
<td>Characteristic</td>
<td>95%</td>
<td>85%</td>
<td>75%</td>
<td>65%</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5. Displays confidence, yet recognizes limitations of being a student.</td>
<td>No instances of displaying lack of confidence</td>
<td>One instance of displaying lack of confidence</td>
<td>Two instances of displaying lack of confidence</td>
<td>Three or more instances of displaying lack of confidence</td>
</tr>
<tr>
<td></td>
<td>No instances of failure to recognize limitation of being a student</td>
<td>One instance of failing to recognize limitations of being a student</td>
<td>Two instances of failing to recognize limitations of being a student</td>
<td>Three or more instances of failing to recognize limitations of being a student</td>
</tr>
<tr>
<td>6. Acts in a professional manner and maintains patient confidentiality according to HIPPA rules</td>
<td>No instances of failing to act in a professional manner</td>
<td>No instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td>One instance of failing to act in a professional manner</td>
<td>Two or more instances of failing to act in a professional manner</td>
</tr>
<tr>
<td></td>
<td>No instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td></td>
<td></td>
<td>One instance of failing to maintain patient confidentiality according to HIPPA rules</td>
</tr>
<tr>
<td>7. Works well in the MLS School as a team member with the other students and instructors</td>
<td>Consistently works well as a member of the team and contributes to the initiatives at hand</td>
<td>Works well as a team member, but does not contribute to the team willingly</td>
<td>Can be encouraged to participate in team initiatives, but prefers to work alone</td>
<td>Does not work well in a team setting (examples will be given)</td>
</tr>
<tr>
<td>8. Demonstrates respect to fellow students as well as instructors</td>
<td>No instances of lack of respect for other students or instructors</td>
<td>One instance where a lack of respect was demonstrated for fellow students or for instructors</td>
<td>Two or more instances where a lack of respect was demonstrated for fellow students or for instructors</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>95%</td>
<td>85%</td>
<td>75%</td>
<td>65%</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9. Is reliable in reporting to class on time and is present on all days assigned</td>
<td>No instances of unexcused absence</td>
<td>No more than 1 instance of unexcused absence</td>
<td>Two or more instances of unexcused absence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No instances of tardiness</td>
<td>No more than 2 instances of tardiness</td>
<td>Three or more instances of tardiness</td>
<td></td>
</tr>
<tr>
<td>10. Exhibits hospitality standards of the profession and hospital to all students and instructors</td>
<td>No instances when hospitality was not displayed</td>
<td>One instance when hospitality was not displayed</td>
<td>Two instances when hospitality was not displayed</td>
<td>Three or more instances when hospitality was not displayed</td>
</tr>
</tbody>
</table>

Grade:

The % is taken times the number of characteristics and totaled. For example, if a student gets 95% on all 10 characteristics, this equals 10 X 95 = 950 divided by 10 = 95% The 95% counts as ½ of the Orientation grade.
Orientation Course— School of Medical Laboratory Science and Histotechnology

Orientation Grade; Professionalism, Ethics, and Affective Behavior

Counts as ½ of the Orientation grade. To be averaged with the Orientation written exam at the completion of the didactic segment of the program.

Objectives

The student will be able to demonstrate the following affective, professional, and ethical behavior during the didactic portion of the program with a minimum of 70% on the following characteristics:

1. Demonstrate an effort to achieve professional excellence by showing initiative to do extra tasks and show a willingness to complete unsolicited tasks.
2. Prepare for daily class assignments in an organized fashion and participate in class discussions (volunteers in class to answer questions and actively discuss class issues). Does not argue with the instructor or solicit other students to argue with the instructor. Lack of preparation for class may be demonstrated in failing quiz grades.
3. Accepts and acts on advice from instructors.
4. Assumes responsibility for behavior by following rules and policies. For example, follows the dress code and rules of the classroom.
5. Displays confidence, yet recognizes limitations of being a student.
6. Acts in a professional manner and maintains patient confidentiality according to HIPPA rules.
7. Works well in the MLS and HTL School as a team member with the other students and instructors. Contributes to the initiatives at hand in a positive manner.
8. Demonstrates respect to fellow students as well as instructors.
9. Reports to class on time and is present on all days as assigned.
10. Demonstrates hospitality standards of the profession and hospital to all students and instructors. Shows courtesy to other students and instructors similar to the hospitality you would show a guest in your home.
1. No food in the classroom or students lab. There is a lounge in another area that you may use for food. There is also a refrigerator and microwave. Exceptions will be made in the classroom when instructors bring food for the class. There will be no food in the student lab at any time.

2. Do not move or rearrange tables and chairs.

3. Do not write on blackboards and whiteboards.

4. School library books are for use in classrooms only. Please do not remove.

5. No feet on the tables. Do not sit on the tables.

6. Professional behavior is expected at all times. During lecture, please do not remove shoes and put feet on chairs.

7. Drinks are permitted in lecture room only, not in lab. Please be careful not to spill drinks on floor.

8. This is a learning/study room. Excessive, loud behavior is not appropriate as there are other hospital personnel nearby and other offices in close proximity.

9. **No cell phones** or any **electronic devices** (music, ear phones etc.) in the classroom or student lab or in any part of the school. Cell phones may be kept in your locker and must be turned off at all times.

10. Dress Code: no flip-flops, no open-toed shoes. Black scrubs must be worn at all times. Please be sure to have your nametag visible at eye level. Shoes must cover the entire foot with leather or plastic. A student demonstrating inappropriate dress will be asked to return home and change prior to attending class. Any class work missed due to inappropriate dress will have to be made up on the students own time.

11. No sleeping in the school during class or between classes. Students found sleeping will be asked to return home until properly rested before returning to class. Any class time missed must be made up by the student.
12. No lying on the floor of the classroom or student lab at any time

13. Noise should be kept to a minimum because we share the building with other classes and offices.

14. All behavior should be professional to include showing respect to fellow students and instructors with seating posture and body language during class and between classes.
Probation
Students must maintain a minimum of 70% on all evaluations to include quizzes and exams. Failure of two or more exams across all subjects plus failure of 3 or more quizzes over all subjects is reason to place a student on Probation status. Continued failure could result in the dismissal of a student. Other options include repeating the entire program. Probation status remains in effect for the entire year.

Academic Calendar
The academic calendar includes all the time from the beginning of class in January or June to the graduation date in December or June respectfully. This includes approximately 12 months with 6 months of didactic and 6 months of clinical/rotation per calendar year.

Behavior Expectations for Didactic and Clinical Experience
Behavior expectations are seen in the Orientation Course Grid for professionalism and ethics. The student must obtain a 70% or higher on this grid for the didactic portion of the program. See attached Appendix A.

For the clinical rotation portion of the program the student must obtain a 70% or higher on the rotation evaluation form. See Appendix B for the Affective Behavior Evaluation Guidelines, Appendix C for the Rotation Evaluation Form, and Appendix D for the Clinical Rotation Overall Objectives. All are attached to this document.
Appendix A
Orientation Course—Professionalism & Ethics ½ of Grade

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>95%</th>
<th>85%</th>
<th>75%</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exhibits effort to achieve professional excellence (initiative)</td>
<td>No instances of lack of initiative or willingness to do extra tasks</td>
<td>No more than 1 instance of lack of initiative or willingness to do extra tasks</td>
<td>No more than 2 instances of lack of initiative or willingness to do extra tasks</td>
<td>3 or more instances of lack of initiative or willingness to do extra tasks</td>
</tr>
<tr>
<td></td>
<td>Several instances of willingness to complete unsolicited tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Prepares for daily class assignments in an organized, timely fashion and participates in class discussions (volunteers to answer questions & actively discusses class issues)</td>
<td>No instances of being unprepared or disorganized in daily class or lack of class participation</td>
<td>One instance of being unprepared or disorganized in class & lack of class participation</td>
<td>Two instances of being unprepared or disorganized in class & lack of class participation</td>
<td>Three or more instances of being unprepared or disorganized in class & lack of class participation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Accepts and acts on advice given by instructors</td>
<td>No instances of failing to accept and act on advice from instructors</td>
<td>One instance of failing to accept and act on advice from instructors</td>
<td>Two or more instances of failing to accept and act on advice from instructors</td>
<td></td>
</tr>
<tr>
<td>4. Assumes responsibility for behavior by following rules and policies</td>
<td>No instances of failure to follow rules and policies</td>
<td>One instance of failure to follow rules and policies</td>
<td>Two or more instances of failure to follow rules and policies</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>95%</th>
<th>85%</th>
<th>75%</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Displays confidence, yet recognizes limitations of being a student.</td>
<td>No instances of displaying lack of confidence</td>
<td>One instance of displaying lack of confidence</td>
<td>Two instances of displaying lack of confidence</td>
<td>Three or more instances of displaying lack of confidence</td>
</tr>
<tr>
<td></td>
<td>No instances of failure to recognize limitation of being a student</td>
<td>One instance of failing to recognize limitations of being a student</td>
<td>Two instances of failing to recognize limitations of being a student</td>
<td>Three or more instances of failing to recognize limitations of being a student</td>
</tr>
<tr>
<td>6. Acts in a professional manner and maintains patient confidentiality according to HIPPA rules</td>
<td>No instances of failing to act in a professional manner</td>
<td>No instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td>One instance of failing to act in a professional manner</td>
<td>Two or more instances of failing to act in a professional manner</td>
</tr>
<tr>
<td></td>
<td>No instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td></td>
<td>One instance of failing to act in a professional manner</td>
<td>One instance of failing to maintain patient confidentiality according to HIPPA rules</td>
</tr>
<tr>
<td>7. Works well in the MLS School as a team member with the other students and instructors</td>
<td>Consistently works well as a member of the team and contributes to the initiatives at hand</td>
<td>Works well as a team member, but does not contribute to the team willingly</td>
<td>Can be encouraged to participate in team initiatives, but prefers to work alone</td>
<td>Does not work well in a team setting (examples will be given)</td>
</tr>
<tr>
<td></td>
<td>Consistently works well as a member of the team and contributes to the initiatives at hand</td>
<td>Works well as a team member, but does not contribute to the team willingly</td>
<td>Can be encouraged to participate in team initiatives, but prefers to work alone</td>
<td>Does not work well in a team setting (examples will be given)</td>
</tr>
<tr>
<td>8. Demonstrates respect to fellow students as well as instructors</td>
<td>No instances of lack of respect for other students or instructors</td>
<td>One instance where a lack of respect was demonstrated for fellow students or for instructors</td>
<td>Two or more instances where a lack of respect was demonstrated for fellow students or for instructors</td>
<td>Two or more instances where a lack of respect was demonstrated for fellow students or for instructors</td>
</tr>
</tbody>
</table>
Appendix A

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>95%</th>
<th>85%</th>
<th>75%</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Is reliable in reporting to class on time and is present on all days assigned</td>
<td>No instances of unexcused absence</td>
<td>No more than 1 instance of unexcused absence</td>
<td>Two or more instances of unexcused absence</td>
<td>Three or more instances of tardiness</td>
</tr>
<tr>
<td></td>
<td>No instances of tardiness</td>
<td>No more than 2 instances of tardiness</td>
<td>Two instances when hospitality was not displayed</td>
<td>Three or more instances when hospitality was not displayed</td>
</tr>
<tr>
<td>10. Exhibits hospitality standards of the profession and hospital to all students and instructors</td>
<td>No instances when hospitality was not displayed</td>
<td>One instance when hospitality was not displayed</td>
<td>Two instances when hospitality was not displayed</td>
<td>Three or more instances when hospitality was not displayed</td>
</tr>
</tbody>
</table>

Grade:

The % is taken times the number of characteristics and totaled. For example, if a student gets 95% on all 10 characteristics, this equals $10 \times 95 = 950$ divided by $10 = 95\%$.

The 95% counts as ½ of the Orientation grade.
Appendix B
School of Medical Laboratory Science
Affective Behavior Evaluation Guidelines
These guidelines are for the Rotation Evaluation Form, Section II.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No instances of lack of initiative or willingness to do extra tasks</td>
<td>No more than 1-2 instances of lack of initiative or willingness to do extra tasks</td>
<td>No more than 3-4 instances of lack of initiative or willingness to do extra tasks</td>
<td>More than 4 instances of lack of initiative or willingness to do extra tasks</td>
</tr>
<tr>
<td></td>
<td>Several instances of willingness to complete unsolicited tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhibits effort to achieve professional excellence (initiative)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepares for daily work assignments in an organized, timely fashion</td>
<td>No instances of being unprepared or disorganized in daily work</td>
<td>No more than 1-2 instances of being unprepared or disorganized in daily work</td>
<td>No more than 3-4 instances of being unprepared or disorganized in daily work</td>
<td>More than 4 instances of being unprepared or disorganized in daily work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepts and acts on advice given by supervisor or technologist/scientist</td>
<td>No instances of failing to accept and act on advice from supervisor or technologist</td>
<td>No more than 1-2 instances of failing to accept and act on advice from supervisor or technologist</td>
<td>No more than 3-4 instances of failing to accept and act on advice from supervisor or technologist</td>
<td>More than 4 instances of failing to accept and act on advice from supervisor or technologist</td>
</tr>
<tr>
<td>Assumes responsibility for work and can work independently</td>
<td>No instances of failing to assume responsibility for work</td>
<td>No more than 1-2 instances of failing to assume responsibility for work</td>
<td>No more than 3-4 instances of failing to assume responsibility for work</td>
<td>More than 4 instances of failing to assume responsibility for work</td>
</tr>
<tr>
<td></td>
<td>No instances of failure to work independently</td>
<td>No more than 1-2 instances of failure to work independently</td>
<td>No more than 3-4 instances of failure to work independently</td>
<td>More than 4 instances of failure to work independently</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays confidence, yet recognizes limitations</td>
<td>No instances of displaying lack of confidence</td>
<td>No more than 1-2 instances of displaying lack of confidence</td>
<td>No more than 3-4 instances of displaying lack of confidence</td>
<td>More than 4 instances of displaying lack of confidence</td>
</tr>
<tr>
<td></td>
<td>No instances of failing to recognize limitations</td>
<td>No more than 1-2 instances of failing to recognize limitations</td>
<td>No more than 3-4 instances of failing to recognize limitations</td>
<td>More than 4 instances of failing to recognize limitations</td>
</tr>
<tr>
<td>Acts in a professional manner and maintains patient confidentiality according to HIPPA rules</td>
<td>No instances of failing to act in a professional manner</td>
<td>No more than 1-2 instances of failing to act in a professional manner</td>
<td>No more than 3-4 instances of failing to act in a professional manner</td>
<td>More than 4 instances of failing to act in a professional manner</td>
</tr>
<tr>
<td></td>
<td>No instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td>No more than 1 instance of failing to maintain patient confidentiality according to HIPPA rules</td>
<td>No more than 2 instances of failing to maintain patient confidentiality according to HIPPA rules</td>
<td>More than 2 instances of failing to maintain patient confidentiality according to HIPPA rules</td>
</tr>
<tr>
<td>Works well in the laboratory as a team member</td>
<td>Consistently works well as a member of the team and contributes to the initiatives at hand</td>
<td>Works well as a team member, but does not contribute to the team willingly (confidence)</td>
<td>Can be encouraged to participate in team initiatives, but prefers to work alone</td>
<td>Does not work well in a team setting (Please provide examples)</td>
</tr>
<tr>
<td>Displays a positive attitude and offers to help other team members</td>
<td>No instances when a negative attitude was displayed</td>
<td>No more than 1-2 instances when a negative attitude was displayed</td>
<td>No more than 3-4 instances when a negative attitude was displayed</td>
<td>More than 4 instances when a negative attitude was displayed</td>
</tr>
<tr>
<td>Characteristic</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Is reliable in reporting to work on time and is present on all days assigned to department</td>
<td>No instances of unexcused absence</td>
<td>No more than 1 instance of unexcused absence</td>
<td>No more than 2 instances of unexcused absence</td>
<td>More than 2 instances of unexcused absence</td>
</tr>
<tr>
<td></td>
<td>No instances of tardiness</td>
<td>No more than 1 instance of tardiness</td>
<td>No more than 2-3 instances of tardiness</td>
<td>More than 3 instances of tardiness</td>
</tr>
<tr>
<td>Communicates well with co-workers, patients, nursing staff, physicians, etc</td>
<td>No instances of poor communication with other staff</td>
<td>1-2 instances of poor communication with other staff</td>
<td>3-4 instances of poor communication with other staff</td>
<td>More than 4 incidences of poor communication with other staff</td>
</tr>
<tr>
<td>Can work under pressure without loss of accuracy</td>
<td>No instances when accuracy was lost because of work pressure</td>
<td>1-2 instances when accuracy was lost because of work pressure</td>
<td>3-4 instances when accuracy was lost because of work pressure</td>
<td>More than 4 instances when accuracy was lost because of work pressure</td>
</tr>
<tr>
<td>Exhibits hospitality standards of the profession, hospital, etc.</td>
<td>No instances when hospitality was not displayed</td>
<td>1-2 instances when hospitality was not displayed</td>
<td>3-4 instances when hospitality was not displayed</td>
<td>More than 4 instances when hospitality was not displayed</td>
</tr>
</tbody>
</table>
Appendix C
Sentara RMH School of Medical Laboratory Science
Rotation Evaluation Form (updated 2/7/2017)

STUDENT NAME: ____________________________

SECTION I (PSYCHOMOTOR AND COGNITIVE)

1. Consistently performs tests on the checklist with precision.
2. Performs tests with acceptable accuracy.
3. Intelligently follows directions (written and oral) and adheres to established procedures.
4. Organizes daily work and maintains a clean work area.
5. Keeps supplies replenished, labeled and updated.
6. Uses appropriate standards and quality control.
7. Understands quality control applications in the section.
8. Displays basic theoretical knowledge of the specialty area. (enter percent score on written test)
9. Applies theoretical knowledge to practical work.
10. Reports tests accurately on computer.
11. Knows panic values and what to do with them.
12. Recognizes abnormal results and assumes responsibility for verifying abnormal results.
13. Performs instrument start-up and operation without assistance.
14. Recognizes malfunction of equipment and technical errors.
15. Pinpoints sources of error and takes corrective action.
16. Recognizes unusual appearance of all types of specimens and identifies errors in collection.
17. Completes tasks assigned in a specified time limit.
18. Practices good safety habits in the laboratory.
19. Demonstrates good manual dexterity by obtaining plus or minus two standard deviations on control specimens.

<table>
<thead>
<tr>
<th>Check Column Representing Grade</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>N/A</th>
</tr>
</thead>
</table>

EXPLANATION OF GRADE VALUES

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100% - meets objective at all times</td>
</tr>
<tr>
<td>3</td>
<td>89% - usually meets objective, but not in every situation</td>
</tr>
<tr>
<td>2</td>
<td>79% - sometimes meets objective but needs help or extra time to meet objective</td>
</tr>
<tr>
<td>1</td>
<td>69% - unacceptable performance; usually does not meet objective and extra time in the department is necessary</td>
</tr>
</tbody>
</table>

Days Absent: ____________________________
Appendix C

SECTION II (AFFECTIVE)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>Exhibits effort to achieve professional excellence by showing initiative (interest in subject matter, willingness to do extra tasks).</td>
</tr>
<tr>
<td>21.</td>
<td>Prepares for daily work assignments in an organized, timely fashion.</td>
</tr>
<tr>
<td>22.</td>
<td>Accepts and acts on constructive advice given by supervisor or technologist/scientist.</td>
</tr>
<tr>
<td>23.</td>
<td>Assumes responsibility for work and can work independently.</td>
</tr>
<tr>
<td>24.</td>
<td>Displays confidence, yet recognizes limitations.</td>
</tr>
<tr>
<td>25.</td>
<td>Acts in a professional manner and maintains patient confidentiality according to HIPPA rules.</td>
</tr>
<tr>
<td>26.</td>
<td>Works well in the laboratory as a team member. Displays a positive attitude and offers to help other team members.</td>
</tr>
<tr>
<td>27.</td>
<td>Is reliable in reporting to work on time and is present on all days assigned to department.</td>
</tr>
<tr>
<td>28.</td>
<td>Communicates well with scientists (co-workers), patients, nursing staff, physicians etc.</td>
</tr>
<tr>
<td>29.</td>
<td>Can work under pressure without loss of accuracy.</td>
</tr>
<tr>
<td>30.</td>
<td>Exhibits hospitality standards of the profession, hospital etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FINAL GRADE

ADDITIONAL COMMENTS: **Discuss evaluation with student, have them sign and return to the Program Director within one month of rotation conclusion.**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT’S SIGNATURE</td>
<td>DATE</td>
</tr>
<tr>
<td>SIGNATURE OF EVALUATOR</td>
<td>DATE</td>
</tr>
<tr>
<td>PROGRAM DIRECTOR</td>
<td>DATE</td>
</tr>
</tbody>
</table>
The student will at the completion of all the clinical rotations with an accuracy of a minimum of 70% on the rotation evaluation form, a written exam and department practical exam:

I. COGNITIVE AND PSYCHOMOTOR OBJECTIVES

1. Perform and complete all tests listed on the rotation competencies/check list with precision. Measurement of this objective will be when the student is able to obtain quality control values within the acceptable range (+ or – 2 std deviations from the mean) 70% of the time. The rotation practical exam score may be entered here.

2. Perform and complete all tests accurately according to the established quality control policies of the laboratory. Measurement of this objective will be when the student is able to obtain quality control values within the acceptable range (+ or – 2 std deviations from the mean) 70% of the time. The rotation practical exam score may be entered here.

3. Follow directions, both oral and written, and adhere to laboratory procedures and policies. (As observed by the rotation instructor.)

4. Develop a logical method of completing daily assigned work while keeping the work area clean and organized. (As observed by the rotation instructor).

5. Restock supplies as needed, properly labeled and rotated to allow the use in an efficient manner.

6. Select the appropriate standards and/or quality control material for each test performed.

7. Apply quality control principles to each test performed, analyze quality control results, and recognize deviations from the acceptable quality control rules.

8. Explain, correlate clinically, trouble shoot, and discuss methods/tests performed in the specialty areas and obtain a minimum of 70% on the written test. The % obtained on the written rotation exam may be entered here.

9. Apply the theoretical principles of tests while performing these tests. (As observed by the clinical instructor. Oral questions may be asked of the student.)

10. Demonstrate ability to report results accurately and utilize the laboratory computer system.

11. Recognize when patient results are in the ‘panic’ range and follow the established laboratory procedures to report these results.

12. Recognize abnormal results and assume responsibility to verify these results following established laboratory procedures.
Appendix D

13. Operate instruments according to the procedure, including start-up, shut-down, loading reagents and specimens, trouble shooting, and correcting minor problems

14. Recognize when instruments are not functioning properly or when technical errors have occurred and analyze the source of the errors. (As observed by the clinical instructor when problems arise.)

15. Take corrective action in correcting an instrument malfunction

16. Receive specimens and determine if the specimen is acceptable for the test requested, is abnormal in appearance, or is collected or labeled in a manner not in accordance with laboratory procedures

17. Complete assigned tasks in a timely manner as determined by the instructor

18. Apply safety principles and practice them in the laboratory.

19. Perform laboratory tasks (pipetting, reconstituting reagents, quality control material, etc) with accuracy. This will be measured by obtaining quality control results within plus or minus two standard deviations from the assigned control values.

II. AFFECTIVE OBJECTIVES

20. Exhibit a professional attitude by showing initiative, interest in subject matter, and willingness to perform additional tasks.

21. Review subject matter prior to rotation, and come to clinical rotation prepared and ready to begin assigned tasks.

22. Accept constructive criticism and advice from instructors and other personnel, and act on these suggestions in a professional manner.

23. Complete assigned work independently and take full responsibility for the work performed.

24. Display confidence, while recognizing limitations, and know when to contact the supervisor or instructor when problems occur.

25. Protect patient confidentiality and present a professional manner at all times. Utilize HIPPA rules with regard to patient confidentiality at all times.

26. Integrate into the work flow of the laboratory, work well with other laboratory personnel, and become a ‘team’ member. Display a positive attitude and offer to help other department workers.

27. Demonstrate reliability by reporting to work on time and each day as scheduled. Maintain break time to the allotted laboratory rules.

28. Communicate well, both orally and in writing, with other technologists, medical staff, employees, patients, and the public.

29. Complete assigned tasks without loss of accuracy during times of increased stress and test volume.

30. Internalize and demonstrate good customer service, and exemplify the hospitality standards of the hospital at all times.
All student records will be maintained permanently.

Student confidentiality is maintained by locked offices, files, and filing cabinets. A student may obtain his/her student records and/or financial records by written request with signature. Records of grades and/or financial history will not be released to anyone without written request from student with signature.
Policy on Rotation Practical Grading
(Revised 2/14/2017)

A. Students will only be awarded points for accurate results.

B. The rotation practical samples are to be treated as actual patients:

 a. One Violation of Sentara’s red rule policy will result in zero points being awarded to the student on the associated question. Two or more violations of the following will result in a failing grade on the entire practical. Violations include:

 i. Misidentification of Patient – Failure to verify and match using at least 2 identifiers before acting

 ii. Reporting Incorrect Critical Values – Failure to do appropriate checks & notification

 iii. Reporting Incorrect Quality Control Values – Failure to appropriately review & release results
ENROLLMENT AGREEMENT

STUDENT INFORMATION

STUDENT NAME: __

ADDRESS: __

CITY/STATE/ZIP: __

TELEPHONE #’S: H: ___________________ C:____________________ W:________________________

E-MAIL: __

SOCIAL SECURITY #: __

EMERGENCY CONTACT: __

RELATIONSHIP: ___________________________ TELEPHONE #:________________________

PROGRAM INFORMATION

DATE OF ADMISSION: ___/___/______ PROGRAM/COURSE: ________________________________

PROGRAM START DATE: ___________________ ANTICIPATED END DATE: ___________________

FULL-TIME: [] PART-TIME: [] DAY: [] EVENING: []
DAYS/EVENINGS CLASS MEETS: (CIRCLE) M T W TH F Sat Sun

TIME OF DAY/EVENING CLASS BEGINS: _________ TIME OF DAY/EVENING CLASS ENDS: _________

NUMBER OF WEEKS: ______________ TOTAL CREDIT/CLOCK HOURS____________

(CIRCLE ONE)

TUITION

THE TOTAL COST OF THE SENTARA RMH MEDICAL LABORATORY SCIENCE PROGRAM

TUITION: $________________

NON-REFUNDABLE REGISTRATION FEE: $_______________ (may not exceed $100)

BOOKS/SUPPLIES: $_______________

UNIFORM: $_______________

MISC. EXPENSIVES: $_______________

TOTAL COST: $_____________________________

CANCELLATION REFUND POLICY

Rejection: An applicant rejected by the school is entitled to a refund of all monies paid.

Three-Day Cancellation: An applicant who provides written notice of cancellation with three (3) business days, excluding weekends and holidays, of executing the enrollment agreement is entitled to a refund of all monies paid, excluding the non-refundable registration fee.

Other Cancellations: An application requesting cancellation more than three(3) business days after executing the enrollment agreement and making an initial payment, but prior to the first day of class is entitled to a refund of all monies paid, less a maximum tuition fee of 15% of the stated cost of the course or $100, whichever is less.
Withdrawal Procedure:

A. A student choosing to withdraw from the school after the commencement of classes is to provide a written notice to the Director of the school. The notice must include the expected last date of attendance and be signed and dated by the student.

B. If special circumstances arise, a student may request, in writing, a leave of absence, which should include the date the student anticipates the leave beginning and ending. The withdrawal date will be the date the student begins leave of absence.

C. A student will be determined to be withdrawn from the institution if the student misses seven consecutive instructional days and all of the days are unexcused.

Tuition refunds will be determined as follows:

<table>
<thead>
<tr>
<th>Proportion of Total Program Taught by Withdrawal Date</th>
<th>Tuition Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 25%</td>
<td>75% of program cost</td>
</tr>
<tr>
<td>25% up to but less than 50%</td>
<td>50% of program cost</td>
</tr>
<tr>
<td>50% up to but less than 75%</td>
<td>25% of program cost</td>
</tr>
<tr>
<td>75% or more</td>
<td>No Refund</td>
</tr>
</tbody>
</table>

NOTICE TO BUYER:

1. Do not sign this agreement before you have read it or if it contains any blank spaces.

2. This agreement is a legally binding instrument.

3. You are entitled to an exact copy of this agreement and any disclosure pages you sign.

4. This agreement and the school catalog constitute the entire agreement between the student and the school.

5. The school reserves the right to reschedule the program start date.

6. The school reserves the right to terminate a student’s training for unsatisfactory progress, nonpayment of tuition or failure to abide by established standards of conduct.

7. The school does not guarantee the transferability of credits to a college, university or institution. Any decision on the comparability, appropriateness and applicability of credit and whether they should be accepted is the decision of the receiving institution.
STUDENT ACKNOWLEDGMENTS:

1. I hereby acknowledge receipt of the school’s catalog dated ________________, which contains information describing programs offered. The school catalog is included as part of this enrollment agreement and I acknowledge that I have received a copy of this catalog.

 __________Student Initials

2. I have carefully read and received an exact copy of this enrollment agreement.

 __________Student Initials

3. I understand that the school may terminate my enrollment if I fail to comply with attendance, academic, and financial requirements or if I fail to abide by established standards of conduct, as outlined in the school catalog. While enrolled in the school, I understand that I must maintain satisfactory academic progress as described in the school catalog and that my financial obligation to the school must be paid in full before a certificate may be awarded.

 __________Student Initials

4. I understand that the school does not guarantee job placement to graduates upon program completion or upon graduation.

 __________Student Initials

5. I understand that complaints, which cannot be resolved by direct negotiation with the school in accordance to its written grievance policy, may be filed with the State Council of Higher Education for Virginia, 101 N. 14th Street, 9th Floor, James Monroe Building, Richmond, VA 23219. All student complaints must be submitted in writing.

 __________Student Initials
CONTRACT ACCEPTANCE

I, the undersigned, have read and understand this agreement and acknowledge receipt of a copy. It is further understood and agreed that this agreement supersedes all prior or contemporaneous verbal or written agreements and may not be modified without the written agreement of the student and the School Official. I also understand that if I default upon this agreement I will be responsible for payment of any collection fees or attorney fees incurred by __________________________ (school name).

My signature below signifies that I have read and understand all aspects of this agreement and do recognize my legal responsibilities in regard to this contract.

Signed this __________ day of______________________, 20________

___ _____________________
Signature of Student Date

___ _____________________
Signature of School Official Date

REPRESENTATIVE’S CERTIFICATION:

I hereby certify that __ has been interviewed by me and in my judgment, meets all requirements for acceptance as a student in the __________ (program name) at __________________________ (school name), as described in the school catalog. I further certify that there have been no verbal or written agreements or promises other than those appearing on this agreement.
MT 410 Orientation and HTL 511 Orientation

Instructor: Abigail L. Blosser, MLS(ASCP)CM

Method of Instruction: Lecture, discussion, question and answer

Goal: To educate the student in laboratory safety, professionalism, ethics, statistics, quality assurance, method validation and statistical approaches to data evaluation so that they may function as an entry level medical laboratory scientist or histotechnologist.

Textbook:

Fundamentals of Clinical Chemistry and Molecular Diagnostics, Tietz, edited by Burtis and Bruns, W.B. Saunders, 7th edition, 2015

Extensive handouts will be utilized in the class.

Pre-requisite Courses:

for MLS: 3 years of college with required science courses plus guarantee of BS degree upon completion of clinical year;

for HTL: a four-year degree with required courses in chemistry and biology and math for entry into the Sentara RMH HTL School.
ORIENTATION LECTURE SCHEDULE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6/17</td>
<td>I. Evaluation of Methods, Method Selection, and Quality Control</td>
<td>Supplemental reading: Tietz: Chap. 2,3,5,6,7</td>
</tr>
<tr>
<td></td>
<td>a. Calibration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Accuracy and Precision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Analytical Sensitivity and Clinical Sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Analytical Specificity and Clinical Specificity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Reportable Range/ Analytical Measurement Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Setting up a Control Range and Acceptable Range on a Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Levey-Jennings Charts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Trends</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Shifts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Normal Gaussian Curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Coefficient of Variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Quality Assurance Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Delta checks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. External Quality Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Panic Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Lab Test Procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l. Westgard Multirule Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m. CLIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n. QC in Chemistry and Hematology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o. Reference Intervals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. Laboratory Mathematics (Molarity etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>q. Dilution Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r. Predictive Value of Positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s. The pH Definition and Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. Computer Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Log-on to wavenet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Information Services Policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Sentara (outlook) email</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Not secure – no inclusion of patient data/info should be included</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Keep keen awareness with all email</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Anything can and will be used against you\</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Avoid suspicious style emails; chain emails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Anything performed on a Sentara PC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is the property of Sentara – ex ‘Great</td>
<td></td>
</tr>
</tbody>
</table>
iii. Accessing internal data – H:\ drive
 (issues with my documents)

 c. Navigate general features of wavenet:
 i. Outlook
 1. Finding people
 2. Added addresses
 3. Composing a signature line
 ii. Compliance 360
 1. Human resources policies and procedures
 2. Navigate to procedures and finding what you’re looking for
 iii. MSDS online
 iv. IT Help desk
 1. Phone number/contact methods
 2. Placing a ticket
 3. Reviewing previous ticketing information
 v. Sentara audioconference
 1. Telcom services
 a. Dial out (9), general access codes
 b. 877-466-2185
 vi. The Sentara Store
 vii. Sentara/Wavenet Directory
 1. Employee look-up

d. Basic features of:
 i. Powerpoint
 1. Basic formatting
 2. Mathematical formulas
 3. Printing
 ii. Excel
 1. Table creation
 2. Equation and cell manipulations
 3. Formula inputs
 a. Sum, average/mean,
III. Laboratory Safety
 a. MSDS Sheets
 b. Hand Washing
 c. Hazard Labels
 d. Classes of Fires and Fire Extinguishers
 e. Hazard Identification System
 f. Standard Precautions
 g. What to do in case of a fire
 h. Codes for the hospital
 i. Bomb Threat Cards
 j. General Safety Standards
 k. Central Safety Areas of Our Lab
 l. What to do in case of a Chemical Exposure
 m. Safety Maps for Our Laboratory
 n. Ergonomics

IV. Introduction to the Profession
 a. Personnel in the clinical laboratory
 b. Organizations that influence the Lab
 i. ASCP, CAP, JCAHO, CLIA 1988, AABB, OSHA, NAACLS, DNV (Det Norski Veritas Healthcare, Inc.
 ii. Federal Gov.
 c. Changes in the profession over the years
 d. Principles and application
 i. Ethics—what does Ethics mean?
 ii. Professionalism
 iii. Ongoing Professional Career Development
 e. Human blood cells
 i. Monocyte
 ii. Platelet
 iii. Segmented Neutrophil
 iv. Lymphocyte
 v. Red blood cell
 vi. Sickle cell, eosinophil, basophil

V. Pre-analytical, Analytical, and Post-analytical Components of Lab Testing
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/9/17</td>
<td>Pre-analytical Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Specimen Collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Other factors that affect the specimen prior to testing</td>
<td></td>
</tr>
<tr>
<td>6/9/17</td>
<td>Analytical Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Testing factors</td>
<td></td>
</tr>
<tr>
<td>6/9/17</td>
<td>Post-Analytical Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Reporting results – factors that affect the test after the test is run</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Panic values</td>
<td></td>
</tr>
<tr>
<td>6/9/17</td>
<td>Patient Confidentiality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. HIPPA Rules and Guidelines</td>
<td></td>
</tr>
</tbody>
</table>

Final Exam
Medical Laboratory Scientist & Histotechnology Schools

MT 410 & HTL 511 Orientation----Objectives

Upon completion of the orientation lectures and reading assignments, the MLS & HTL student will: (measurement will be the attainment of a minimum of 70% on a written exam)

1. Recognize and define panic values. Describe the appropriate course of action when panic values are found in the lab. Explain why a QC program is necessary in a lab.

2. Utilize in method validation the following terms: calibration, accuracy, precision, sensitivity, specificity, reportable range, and reference intervals.

3. Set up a quality control program for a laboratory to include the following tasks:
 - Calculation of standard deviation
 - Assign ranges for the controls
 - Draw Levey Jennings Charts
 - Interpret Levey Jennings charts containing upward and downward trends and shifts
 - Identify results that do not meet the Westgard Multirules
 - Devise a successful plan to correct any QC problems

4. Interpret the daily plotted control values on a Levey Jennings Chart.

5. Draw a normal Gaussian Curve and assign percent values to plus and minus one, two, and three standard deviations from the mean.

6. Evaluate different laboratory methods by utilizing the coefficient of variation calculation. Select the best method from the calculation results. Correlate the meaning of coefficient of variation and reproducibility of a method.

7. Interpret the National Fire Hazard Labels.

8. Define the different classes of fires and what fire extinguisher to use. Use the fire extinguishers in the correct manner.
9. Recognize and respond to all the hospital codes such as code pink etc.

10. Define the meaning of RACE with regard to a fire.

12. Utilize Bomb Threat Cards and identify where they are found in a department.

13. Define the “Right to Know” Law and how it affects the laboratory and the employee.

14. Identify where “Spill Kits” are found in the laboratory and the school and use these kits if necessary.

15. Define and use Delta checks.

16. Demonstrate the proper hand washing technique.

17. Explain CLIA of 1988 to include personnel in the lab and meaning of “CLIA.”

18. Define the differences between plasma and serum.

19. Define the various organizations discussed in class that influence the clinical laboratory to include ASCP, JCAHO, and CAP.

20. Discuss the changes that have occurred in the clinical laboratory over the years.

21. Adapt a professional attitude to include the protection of the patient’s confidentiality.

22. Utilize statistical approaches to data evaluation.

23. Utilize the safety features in the laboratory and school to include the following:
 - MSDS sheets
 - spill kits and hazard identification labels
 - protective equipment
 - different types of fire extinguishers
 - standard precautions
 - bomb threat cards
 - chemical exposure directions
 - safety maps of the laboratory.

24. Define the variables of lab testing as they are categorized according to the
following terms:
• Pre-analytical
• Analytical
• Post-analytical

25. Demonstrate a professional behavior while applying HIPPA rules and guidelines regarding patient confidentiality.

26. Defend a professional attitude by practicing personal career development, ethics, and general characteristics of a clinical laboratory scientist professional.

27. Explain the Six Sigma Process.

28. List the sections that must be included in a laboratory procedure according to the CLSI, Clinical Laboratory Standards Institute.

29. Identify pre-analytical variables of laboratory testing as addressed in Tietz.

30. Define ethics.

31. Demonstrate ethical behavior.

32. Define professionalism.

33. Correlate professionalism and HTL & MLS.

34. Describe the certification maintenance program from ASCP.

35. Calculate problems for molarity and normality.

36. Perform serial dilutions and calculate the final dilution.

37. Solve problems that may occur in making math calculations in the clinical laboratory, and when making up reagent solutions.

38. Make dilutions in the clinical laboratory.

39. Identify and solve problems in making dilutions in the clinical lab.

40. Convert mg% to mEq/L and mEq/L to mg% for analytes. Identify and correct problems that may occur in these calculations.

41. Identify basic blood cells to include monocyte, lymphocyte, segmented neutrophil, and the platelet (which is not a cell.)

42. Identify the normally largest cell seen in a peripheral blood smear.
43. Describe the function of the platelet seen in a peripheral blood smear.

44. Define the following to include formula if applicable:
 - Analytical sensitivity
 - ASCP
 - JCAHO
 - CLSI
 - Youden Plot
 - Predictive value of positive (PV) – calculate the value for a test
 - The pH – interpret pH value and assign as basic, acid, or neutral
 - Buffer

45. Define ergonomics in an organization and explain why this is necessary in the laboratory.

46. Calculate and perform Metric conversions.

47. Define and discuss buffer and buffer systems.

48. Discuss and define pH and correlate pH values with acid, neutral and basic.

Following completion of computer training, the student should be able to:

1. List the steps involved in the selection and acquisition of laboratory information systems. (This objective will be addressed in the management class.)

2. Explain and use appropriately the computer systems found in the current clinical laboratory. Discuss computer science and principles of computers including start-up procedure and Internet use and access.

3. Explain, use, and trouble-shoot the applications of desktop PC’s to include the following: word processing, spreadsheets, databases, browsers, e-mail such as Outlook, rebooting procedures, and Windows.

4. Utilize Windows Excel, Power Point and word-processing programs.
MT 409 Education and Research Methods and Design

Instructor: Abigail L. Blosser, MLS(ASCP)CM

Method of Instruction: Lecture, discussion, question and answer, and doing. Class participation is highly recommended.

Goal: Education of the student in education methodology and research design so that they may more easily teach after graduation and evaluate published research articles as an informed consumer.

Reference Texts:

Henry’s Clinical Diagnosis and Management by Laboratory Methods, by Richard A McPherson and Matthew R. Pincus, 2017

Polgar and Thomas, Introduction to Research in the Health Sciences, Churchill Livingstone, 2008

Wallace and Klosinski, Clinical Laboratory Science Education and Management, Saunders, 1998

Reference Article:

“Writing Instructional Objectives,” by Kathy Waller PhD, NAACLS Board of Directors

Pre-requisite Courses:

for MLS: 3 years of college with required science courses plus guarantee of BS degree upon completion of clinical year;
for HTL: a four-year degree with required courses in chemistry and biology and math for entry into the Sentara RMH HTL School.
10/11/2017

I. The Education Process
 a. Learning
 b. The Teacher as a Facilitator
 c. Qualities of a Teacher
 i. Student expectations of a course
 ii. Teacher responsibilities
 d. Behavioral Objectives (Educational Map)
 i. Competency-Based Education
 ii. Task Analysis
 iii. Benefits of objectives for students
 iv. How to write an objective
 e. Professional Competency: Hierarchical Domains
 i. Cognitive Domain
 1. Bloom vs. Board of Registry
 ii. Affective Domain
 1. Attitudes
 iii. Psychomotor Domain
 1. Hand to Eye coordination
 f. Questions to answer and one problem to solve

II. Research Design/Practice
 a. Introduction to Research: Process and Plan; Problem and Hypothesis
 b. Writing a Proposal
 c. IRB Process
 d. External and Internal Validity
 e. Research Design: Experimental & Quasi-experimental
 f. Data Collection/Measurements & Instrumentation
 g. Use of Statistics: Descriptive and Inferential
 h. Selection and Interpretation of Statistical Tests
 i. Dissemination and Critical Evaluation of Research
 j. Writing for Publication in the Clinical Laboratory Sciences

10/13/2017

III. Teaching Methods
 a. Lecture
 i. Advantages and disadvantages (Handout)
b. Discussion

c. Teaching Via Electronic Media
 i. CAI—Computer Assisted Instruction
 ii. Teaching Using the Internet
 1. Communication with patients
 2. Drug searches
 3. Disease states

d. Role Playing
e. Demonstrations
 “A well-prepared demonstration is worth a million words.”
f. Videos & Tapes
g. Distance Learning

IV. Types of Testing
 a. Objective vs. Subjective
 i. Essay tests
 ii. Matching
 iii. Multiple choice
 iv. Short answer

V. Research
 a. Statistical significance in a research study
 i. “Effect Size”
 b. Inferential Statistical Tests
 c. Communications of research results
 d. Collection Qualitative Data
 i. Coding Qualitative Data
 e. Publication Format
 f. Evaluation of research papers

10/16/2017

Student Presentation

- Each student will give a 5 minute presentation to the class
 - Grading:
 - Overall presentation 10 points
 - Completeness of outline 5 points
 - Correctness of objectives 20 points
 - Objective correlation with test 20 points
 - Objectivity of test questions 20 points
 - Overall correlation (obj. test etc.) 25 points

The topic must relate to laboratory medicine, but should be of
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/18/2017</td>
<td>Final Exam</td>
<td>special interest to you. You select your own topic. Total.......................100 points</td>
</tr>
</tbody>
</table>
The MLS and HTL student will at the completion of the MT 409 Education and Research course, reading assignments, and practice in class giving a lecture with a minimum of 70% accuracy on a written or oral exam:

1. Define competencies and curriculum, and write behavioral objectives. Explain how all these and learning are interrelated to develop a curriculum.

2. List the qualities of a good teacher. Discuss how the teacher is a facilitator.

3. Explain the results of research as it applies to student expectations of a course.

4. Utilize competency-based education and task analysis as it relates to observation of performance and conversion of this into objectives and competencies.

5. List the responsibilities of a good teacher.

6. Write a behavioral objective for information given in class.

7. List the benefits of objectives for students.

8. List and define the three learning domains of Bloom to include cognitive, affective, and psychomotor.

9. Write objectives in the three learning categories utilized on the Board of Certification Exam to include recall, application, and problem solving.

10. Explain the six levels of learning in the Cognitive domain and correlate with the certification exam modified levels of three instead of six. Explain and write test questions at each level utilized in the certification exams.

11. List the levels in the Affective domain and explain how one progresses up the domain.

12. List the three levels of learning in the psychomotor domain.
13. Demonstrate a working knowledge of role playing by performing a scene in class from a pre-determined clinical setting. Explain how role playing can be used in an educational setting.

14. List the advantages and disadvantages of the various teaching techniques to include lecture, question and answer, discussion, role playing, demonstration, and doing.

15. List the advantages and disadvantages of computer-assisted instruction.

16. Write a description of teaching using the Internet and give advantages of this method.

17. List and write examples of the different types of evaluation to include multiple choice, essay, short answer, and matching. Explain which methods of evaluation are subjective or objective. Define subjective as compared with objective as it applies to test questions.

18. Write a lecture or teaching module complete with objectives, outline, and evaluation mechanisms.

19. Evaluate published studies as an informed consumer.

20. List the steps in the research process.

21. Explain the factors to consider when writing for publication in the clinical laboratory sciences.

22. Describe the use of statistics, both descriptive and inferential, with regard to research practice.

23. Identify the purpose of various types of research.

24. Give a five minute presentation to the class demonstrating good eye contact, speaking ability, and write objectives, competencies and test questions on this presentation. Correlate the objectives, competencies, and test questions for this presentation.

25. List the requirements of JACHO for hospital employees.

26. Discuss correlation coefficient and define the meaning of different numerical values.

27. Describe the different types of tests to include Norm-referenced and Criterion-referenced.

28. Identify the group of people that investigates research articles for publication.

29. Identify the general areas/Standards required by NAACLS to be included as part of the curriculum for a BS degree level such as HTL and MLS
30. Identify goals and compare them with objectives for a course of instruction.

31. Discuss the use of criticism in instruction.
MT 408 Clinical Laboratory Supervision and Management

Instructor: Abigail L. Blosser, MLS(ASCP)CM

Method of Instruction: Lecture, discussion, question and answer, role playing, and practice of the various management skills

Course Goal: To educate the student in all areas of laboratory management so that they may function as a beginning level scientist/technologist with the projected ease of movement into future management positions in the clinical laboratory.

Pre-Requisite Courses: Three years of college to include the required courses for entry into the RMH Medical Laboratory Scientist School.

Principle Reference Text: McPherson and Pincus, *Henry's Clinical Diagnosis and Management by Laboratory Methods*, 23rd edition, 2017

Other References:

“Myths of Information Systems Selection,” Braley Consulting Services, Inc.

“Information System Selection: There is a Better Way,” Braley Consulting Services, Inc.

CLINICAL LABORATORY SUPERVISION AND MANAGEMENT LECTURE SCHEDULE

DATE: TOPIC: READING ASSIGNMENT:

10/19/17 I. Management Process and Managers
 a. Organizational Chart
 b. Management Concepts
 i. Management by Objectives
 ii. Quality Management
 c. The Six Management Functions
 d. Managerial Roles
 e. Styles of Management
 f. Traits of Managers

II. Planning
 a. SWOT Analysis
 b. Components of Planning
 c. Flow Diagram of a Process
 d. Effective Time Management

III. Dynamics of Healthcare Delivery Systems
 a. Effect on Laboratory Service
 b. Systems in the United States

10/20/17 IV. Organizing
 a. Authority and Responsibility
 b. Reengineering a Laboratory Process
 c. Ergonomics
 d. Materials Management
 e. Organizing Activities and Events

V. Directing
 a. Essential Skills of Directing
 i. Communication
 1. Verbal (Body Language)
 b. Motivating
 i. Maslow’s Hierarchy of Human Needs
 c. Delegating
 d. Coaching

VI. Controlling
 a. Work Standards
 b. Work Measures
 c. Quality Assurance
 d. Plan, Do, Check, Act (PDCA from Dr. W. Edwards Deming)
 e. Decision Making and Problem Solving

10/23/17 VII. Laboratory Information Systems
 a. System Components
b. Software and Networks

c. Hardware
 i. Hospital Information System

d. Interface Software

VIII. The Electronic Medical Record

IX. The Acquisition and Evaluation of Laboratory Information Systems
 a. Define System Requirements
 b. Request Bids
 c. Demonstrations
 d. Staffing
 e. Implementation
 f. Standard Operating Procedures
 g. Data Security
 h. Data Retention

10/25/17

Exam 1

10/26/17

X. Coordinating
 a. CLIA 1988
 b. Multiskilled Workers
 c. Government Legislation Affecting Labs
 i. Diversity and the Americans with Disabilities Act
 ii. Government Regulation and Standards as Applied to Lab Practice
 d. Scheduling and Teams
 e. Critical pathways, PERT and planning techniques

XI. Total Quality Management and Quality Assurance/Quality Improvement
 a. Basic requirements
 b. Team Building Skills and Uses
 i. Continuous Improvement
 ii. Performance Improvement
 c. Basic tools of TQM
 i. Cause and Effect Diagram (fishbone diagram)
 ii. Dispersion Analysis Diagram
 d. Principles and Practices of Quality
DATE: 10/27/17

XII. Federal Government Legislation Related to Hiring Practices

XIII. Managing Finances
 a. Basic Financial Management
 b. Profit and Loss
 c. Revenue, Operating Costs, Capital Costs, Cost Management, Cost Analysis
 i. Cost Per Test
 ii. Break Even Analysis
 iii. Cost Accounting and Cost Containment
 iv. Reimbursement Requirements
 v. Materials and Inventory Management

XIV. Evaluating and Personnel Management
 a. Basic Principles of Evaluation
 b. Personnel Evaluation and Human Resource Management
 i. Performance Standard/Evaluation
 1. Utilization of Personnel
 2. Analysis of Workflow and Staffing Patterns
 ii. Competence Assessment
 iii. Performance Appraisals (PFP) and Position Description
 iv. Performance Interview
 c. Evaluation of Activities
 i. Laboratory Productivity Measures
 ii. Outcomes Management

XV. Benchmarking

XVI. Marketing Services
 a. Customer Service, Guest Relations

XVII. Clinical Decision Making
XVIII. Dynamics of Healthcare Delivery Systems
a. Affect on Laboratory Service
b. Healthcare Delivery in US versus Other Countries
c. Current Changes Proposed by Federal Government

10/30/17

XIX. Quality Management
a. Analyzing, Improving, reexamining resources, processes and services

XX. Quality Assessment
a. Total Quality Plan
b. Total Testing Process
 i. 3 Phases
 1. Preanalytical
 2. Analytical
 3. Post analytical

XXI. Quality Improvement Tools
a. Q-Probes
b. Q-Tracks
c. Quality Control
 i. Deviation
 1. Systemic
 2. Random
 ii. Frequency
d. Levey-Jennings Charts
 i. Westgard Rules
e. External QC (Proficiency Testing)

XXII. Quality Management of Postanalytical Processes
a. Time Sensitive
b. Test Selection & Implementation
 i. Waived
 ii. Non-waived

XXIII. Current Regulations
a. Four Horsemen
 i. CLIA ’88
 1. FDA
 2. CMS
 3. CDC
 ii. HIPPA
 iii. OSHA
 iv. Stark
<table>
<thead>
<tr>
<th>DATE:</th>
<th>TOPIC:</th>
<th>READING ASSIGNMENT:</th>
</tr>
</thead>
</table>
| 10/31/17 | XXIV. Safety Management Plan & Responsibilities | b. Long-Term Effects: Legislation, Regulation, Accreditation
c. Healthcare Reform
 i. PPACA
 ii. Current Trends and Issues with Healthcare Reform

| | XXV. Laboratory Hazards | a. Biological
 i. Transmission
 ii. LAIs
b. Chemical
 i. Classification
 ii. Exposure
c. Physical
d. Radiological
 i. Risk
 1. Time
 2. Distance
 3. Shielding

| | XXVI. Standard Precautions | a. OSHA

| | XXVII. Hazard Prevention and Containment | a. Risk Assessment
 i. Exposure Control Plan
 ii. WHO
 iii. CDC/NIH
 iv. Biosafety Lab
b. Handwashing
c. Barrier Protection
d. Engineering Controls
e. Chemical Fume Hoods
f. Biological Safety Cabinets
g. Sterilization and Decontamination
 i. Germicides
 ii. Disinfectant |
iii. Sterilants

XXVIII. Spill Management

11/1/17

XXIX. Metric System
 a. Mass
 b. Length
 c. Volume
 d. Conversions

XXX. Aqueous Solutions

XXXI. Molarity

XXXII. Normality

XXXIII. Molality

XXXIV. Dilutions
 a. Clinical Application
 b. Dilution Series
 i. Independent
 ii. Serial
 1. Four fold Serial Dilutions

11/2/17

Final Exam
MT 408 Clinical Laboratory Supervision and Management

OBJECTIVES:
The MLS and HTL student will at the completion of the lectures and classes, reading assignments, class participation and other assignments on management:
(Measurement will be the attainment of a minimum of 70% on a written or practical exam, unless otherwise stated)

1. Describe the six management functions and relate each to management in the laboratory. List the management functions and define each one in detail.

2. Assess one's own leadership abilities with regard to the qualities presented in class.

3. Evaluate management scenarios given in class, and select the appropriate course of action in managing an employee or other problem.

4. Describe the characteristics of a good manager. Define a good manager and list specific characteristics to include personality types, communication skills, ability to organize, and knowledge of the area.

5. Distinguish effective management attributes from ineffective ones.

6. Describe a minimum of three types of plans, and relate these to managing the clinical laboratory.

7. Describe total quality management and relate it to the management of healthcare.

8. Prepare a flow chart to analyze the processing of specimens for the RMH Clinical Laboratory. Devise a plan to improve this flow of specimens.

9. Prepare a SWOT Analysis for the implementation of a “Point of Care” testing section for the RMH Laboratory Department.

10. Devise a plan for effective time management by utilizing the skills discussed in class.

11. Draw an organizational chart and define the direct lines of authority and indirect lines of authority.

12. Define organizing as it relates to management.
13. Explain the need for good customer service in health care today.

14. Describe one way to reengineer the process of accepting specimens and processing these specimens at the RMH Laboratory. The new process would result in a decrease in staff and money, thus an improvement to the bottom line.

15. Describe ergonomics and how it relates to computer use.

16. Explain the benefit of effective directing on personnel and productivity.

17. Demonstrate effective verbal communication and describe the need for such a skill in management. (Include the proper use of body language, facial expressions, silence, sounds, etc.)

18. Describe the barriers to effective communication.

19. Relate the need for motivation to effective management.

20. Describe Maslow’s hierarchy of human needs, and how an organization fulfills those needs.

21. Relate delegating to directing as it applies to good management.

22. Describe coaching as it relates to effective management.

23. Define controlling as it relates to timely and cost-effective attainment of an organization’s goals.

24. Analyze and revise a PFP (Pay for Performance) Standards Form for a position in the RMH Clinical Laboratory (Education Coordinator Position).

25. Describe a quality assurance program and its use in the clinical laboratory.

26. Utilize the PDCA (Plan, Do, Check, Act) cycle. (The Shewhart Cycle devised by Dr. W. Edwards Deming for use in the process of continuous quality improvement).

27. Describe the problem solving steps and utilize these steps to solve a management problem presented in class.

28. Describe the coordinating function of management.

29. Role-play an interview scenario utilizing the acceptable and lawful questions in an interview.
30 Discuss the multi-skilled worker, and the Americans with Disabilities Act (ADA).

31. Relate testing volumes to scheduling for staff.

32. Describe the federal government legislation related to hiring practices, regulation of laboratories, and personnel.

33. Draw an organizational chart showing the federal agencies that relate to health and human services.

34. Discuss registration, licensure, certification, and accreditation as it relates to the clinical laboratory.

35. Describe the test systems according to CLIA ’88.

36. Discuss the agencies and associations associated with the clinical laboratory (AABB, AHA, CDC, CAP, COLA, DPH, FDA, HCFA, ISO, JCAHO, NCCLS, NIDA, OSHA, National Technical Information Services.)

37. Describe the government legislation related to medical practice to include Medicare, CLIA, OSHA, Stark I, 1989, Stark II 1993 and PPACA.

38. Utilize financial and accounting terms commonly used in the laboratory fiscal management to include:
 - Profit and loss
 - Cost/benefit
 - Reimbursement requirements
 - Materials/inventory management

39. Describe sources of laboratory revenues, and explain the challenges managers face in obtaining these revenues.

40. Define laboratory costs, and describe how each is used in calculating total expense, cost per test, and break-even numbers.

41. Evaluate cost containment strategies.

42. Define the basic principles of evaluation, and describe ways to assess the performance of laboratory personnel and laboratory-related activities.

43. Describe employee competency checks, and devise a competency assessment for a medical laboratory scientist and a histotechnologist.

44. Role-play a successful performance interview from a scenario given in class.
45. Calculate productivity ratios for a clinical laboratory for one month.

46. Describe outcomes management and outcome measures.

47. Define benchmarking and its application to management in the laboratory.

48. Describe laboratory marketing services, customer relations, guest relations, and develop a plan to handle and monitor customer complaints.

49. Describe the process of acquiring a laboratory information system.

50. Evaluate the usefulness of a laboratory information system.

51. Outline an article on the acquisition and evaluation of a laboratory information system, and describe the contents of the article to the rest of the class.

52. Utilize concepts and principles of laboratory operations as they apply to performance improvement.

53. Describe the dynamics of healthcare delivery systems as they affect laboratory service by reading and discussing the following summaries:
 - The Health Care Delivery System: A Blueprint for Reform
 - Integrated Health Care Delivery Systems’ Challenges by Bonnie Boone

54. Describe the dynamics of healthcare delivery systems as they affect laboratory services, healthcare in the US and other countries, and current proposed changes by the Federal Government.

55. Demonstrate how critical pathways can be used in making clinical decisions and in planning for the future.

56. Utilize job descriptions in preparing a PACE form for a RMH employee who works in the lab. Demonstrate how these are used in the annual review process.

57. Define one FTE and calculate an annual salary when given pay per hour.

58. Utilize concepts and principles of motivational theories as they apply to performance improvement.

59. Describe a quality management system for continuously analyzing, improving and reexamining resources, processes and services within an organization.

60. Discuss the total testing process as a comprehensive working model for evaluating the components of the laboratory’s quality management plan to include Preanalytical, analytical and post-analytical variables.
61. Discuss quality control as a method for establishing specifications for an analytical process, assessing the procedures, monitoring conformance by statistical analysis, and taking corrective actions to bring the procedures into conformance.

62. Define the essential components of a laboratory safety program

63. Evaluate the program for regulatory compliance

64. Identify hazardous materials and procedures in the laboratory.

65. Calculate the acceptable range for a control in the laboratory when the mean and standard deviation are given.

66. Analyze Levey-Jennings quality control charts by doing the following:
 • Identify an upward and downward shift and trend
 • Apply quality control rules to determine the possible cause of an error
 • Correct an error

67. Calculate the mean, median, mode and standard deviation.

68. Calculate molarity, normality, molality, dilutions, conversions from mg% to mEq/L and from mEq/L to mg%, and conversions from one concentration to another.

69. Make a dilution from a concentrated stock solution correctly.
Instructor: Abigail Blosser, B.S., MLS (ASCP)CM

Method of Instruction: Lecture, discussion, question and answer

Course Goal: To educate the student in Hematology, Coagulation, and Genetics so they may function as a beginning level technologist/scientist in the clinical hematology laboratory.

Textbooks:

McPherson and Pincus, *Henry’s Clinical Diagnosis and Management by Laboratory Methods, 23rd edition*, 2017

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/9/17</td>
<td>I. Introduction to Hematology</td>
<td>Chapter 1</td>
</tr>
<tr>
<td></td>
<td>a. Blood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Hematopoiesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Erythropoiesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. RBC maturation series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. RBC membrane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Hemoglobin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Structure and function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Heme synthesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Globin synthesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Abnormal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. RBC metabolism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. RBC senescence</td>
<td></td>
</tr>
<tr>
<td>6/12/17</td>
<td>II. Erythrocytes</td>
<td>Chapters 3 and 5</td>
</tr>
<tr>
<td>6/14/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Normal morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Abnormal morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Anisocytosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Poikilocytosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. RBC inclusions</td>
<td></td>
</tr>
<tr>
<td>6/16/17</td>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>6/19/17</td>
<td>III. Leukocytes</td>
<td>Chapter 1</td>
</tr>
<tr>
<td></td>
<td>a. Myelopoiesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Granulocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Lymphopoiesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Lymphocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. T-cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. B-cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Null-cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Monocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. WBC count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Physiological leukocytosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. WBC differential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Absolute counts</td>
<td></td>
</tr>
<tr>
<td>6/21/17</td>
<td>IV. Platelets</td>
<td>Chapters 23 and 24</td>
</tr>
<tr>
<td></td>
<td>a. Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Platelet count</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>6/23/17</td>
<td>V. Erythrocyte Methods</td>
<td></td>
</tr>
<tr>
<td>6/26/17</td>
<td>a. Enumerative procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Automated count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Manual count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Retic count</td>
<td></td>
</tr>
<tr>
<td>6/28/17</td>
<td>b. Hemoglobin and hematocrit</td>
<td></td>
</tr>
<tr>
<td>6/30/17</td>
<td>c. RBC indices</td>
<td></td>
</tr>
<tr>
<td>6/28/17</td>
<td>REVIEW I and REVIEW II</td>
<td></td>
</tr>
<tr>
<td>6/30/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>7/3/17</td>
<td>VI. Erythrocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Basic tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Hemoglobin S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. ESR (Erythrocyte Sedimentation Rate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Osmotic fragility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Hemoglobin electrophoresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Sugar water test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Ham’s test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vii. Schilling test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Cytochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Wright’s stain and variations (Romanowsky stain)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Prussian blue (Iron stain)</td>
<td></td>
</tr>
<tr>
<td>7/5/17</td>
<td>VII. Erythrocyte Diseases</td>
<td>Chapters 4, and 6-14</td>
</tr>
<tr>
<td>7/7/17</td>
<td>a. Anemias</td>
<td></td>
</tr>
<tr>
<td>7/10/17</td>
<td>i. Normocytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Acute blood loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Hemolytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Aplastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Myelophtisic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Hypoproliferative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Macrocytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Megaloblastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Microcytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Iron deficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Sideroblastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Hereditary hemochromotosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Hemoglobinopathies and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thalassemias</td>
<td></td>
</tr>
<tr>
<td>7/12/17</td>
<td>b. Polycythemia</td>
<td></td>
</tr>
<tr>
<td>7/14/17</td>
<td>REVIEW</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7/17/17</td>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>7/19/17</td>
<td>VIII. Leukocyte Methods</td>
<td>Chapters 15 and 36</td>
</tr>
<tr>
<td>7/21/17</td>
<td>a. Enumerative procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Automated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Differential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. WBC estimate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Correction for nRBCs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Eosinophil count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Basic tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. LE (Lupus Erythematosus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Cytochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Peroxidase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Periodic-Acid-Shiff</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Sudan black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Leukocyte Alkaline Phosphatase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. TdT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Cytochemical esterases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vii. Tartrate Resistant Acid Phosphatase (TRAP)</td>
<td></td>
</tr>
<tr>
<td>7/24/17</td>
<td>REVIEW</td>
<td></td>
</tr>
<tr>
<td>7/26/17</td>
<td>Exam 4</td>
<td></td>
</tr>
<tr>
<td>7/28/17</td>
<td>IX. Leukocyte Anomolies</td>
<td>Chapters 16 – 23</td>
</tr>
<tr>
<td>7/31/17</td>
<td>a. Neutrophil disorders</td>
<td></td>
</tr>
<tr>
<td>8/2/17</td>
<td>b. Reactive lymphocytes</td>
<td></td>
</tr>
<tr>
<td>8/4/17</td>
<td>c. Leukemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Acute lymphoblastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Acute myeloid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. M0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. M2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. M3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. M4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. M5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. M6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. M7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Chronic lymphocytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Hairy cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Sezary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Lymphomas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Multiple myeloma</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>8/7/17</td>
<td>Hematology Case Studies and REVIEW</td>
<td></td>
</tr>
<tr>
<td>8/9/17</td>
<td>Exam 5</td>
<td></td>
</tr>
<tr>
<td>8/11/17</td>
<td>X. Platelets</td>
<td>Chapters 25 and 27</td>
</tr>
<tr>
<td>8/14/17</td>
<td>a. Structure and function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Test methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Specimen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Manual count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Smear estimate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Automated count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Bleeding time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Aggregation studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vii. PFA-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Thombasthenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Thrombocytosis</td>
<td></td>
</tr>
<tr>
<td>8/16/17</td>
<td>XI. Bone Marrow in Pathological States</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>8/18/17</td>
<td>XII. Hematology Instrumentation</td>
<td>Chapters 32 and 34</td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>8/21/17</td>
<td>STUDENT PRESENTATIONS ON ASSIGNED DISEASES</td>
<td></td>
</tr>
<tr>
<td>8/23/17</td>
<td>Exam 6</td>
<td></td>
</tr>
<tr>
<td>8/25/17</td>
<td>XIII. Molecular Diagnostic Techniques in Hematopathology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Applications of DNA technology to diagnostic medicine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Structure of DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Sample sources for molecular procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Sequence-specific fragmentation of DNA by restriction endonucleases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Nucleic acid extraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Diagnostic procedures for analyzing DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Southern blot analysis, PCR, reverse transcriptase PCR, in situ hybridization</td>
<td></td>
</tr>
</tbody>
</table>
School of Medical Laboratory Science

HEMATOLOGY LECTURE OBJECTIVES

The student will, at the completion of the lectures, reading assignments, case studies and verbal instructions on Hematology by attaining a minimum of 70% on a written or oral exam:

I. INTRODUCTION AND ERYTHROPOIESIS

1. Recognize a normal peripheral blood smear and the following normal cells:
 - Neutrophils, segmented vs bands
 - Lymphocytes
 - Monocytes
 - Eosinophils
 - Basophils
 - Normal red blood cells
 - Platelets
2. Correlate all anticoagulants with the proper hematology tests.
3. Interpret a graph representing the location of erythropoiesis in the fetus and after birth.
4. Describe and identify chronologically the cells found in the RBC maturation series.
5. Illustrate and describe the steps in the synthesis of heme, globin, and hemoglobin.
6. Describe diseases or toxic states that cause a break in the synthesis of #4, such as lead poisoning and correlate with the blood picture.
7. List the normal globin chains of all the normal hemoglobins found in the fetus and in adults as well as other abnormal hemoglobins discussed in class.
8. Analyze the hemoglobin-oxygen dissociation curves and explain the causes that make the curve shift to the right and to the left. Analyze what happens to the affinity of hemoglobin for oxygen when the curve moves.
9. Explain the release of erythropoietin with regard to origin, function, and stimulus for its release.
10. Define cytokines and clinically correlate when they should be used to treat a patient.
11. Explain RBC senescence to include the organ system involved, the breakdown of
hemoglobin and both extravascular and intravascular hemolysis.

II. ERYTHROCYTES

12. Identify normal morphology of human red blood cells on a blood smear.
13. Define the terms anisocytosis and poikilocytosis. Utilize these terms in describing a blood smear.
14. Identify the causes for abnormal RBC shapes and sizes.
15. Correlate abnormal RBC morphology with diseases and suggest future testing which may be helpful in establishing a diagnosis.
16. Interpret pictures, slides and blood smears of acanthocytes and correlate clinically to the disease.
17. Identify all the red blood cell inclusions discussed in class.
18. Describe the composition of each of the RBC inclusions. Clinically correlate the RBC inclusion with the appropriate disease.
19. Identify ringed sideroblasts and explain how and why they are formed.
20. Solve case studies given in class containing abnormalities on the blood smear to include rouleaux, RBC agglutination, polychromasia, macrocytosis, microcytosis, abnormal RBC inclusions, and any other RBC cell abnormality discussed in class.
21. Solve case studies illustrating diseases that demonstrate abnormal RBC morphology on the peripheral smear such as Thalassemia, iron deficiency anemia and Pernicious anemia.

III. LEUKOCYTES

22. Arrange and name the cells chronologically in the WBC maturation series.
23. Recognize a normal peripheral blood smear stained with Wright’s stain.
24. Diagram the lymphocyte maturation series and name the cell at each stage.
25. Explain the characteristics of T, B, and null lymph cells with regard to laboratory identification. Describe the function of each immunologically and correlate with the CD classification.
26. Identify and name the stages in the maturation of the monocyte.
27. Identify the macrophage and explain the origin of these cells.
28. Explain the function of the macrophage.
29. Explain the causes for physiologic leukocytosis.
30. Identify inclusions inside WBCs such as Dohle bodies and toxic granulation. Correlate clinically these WBC inclusions to the appropriate disease or condition.
31. Calculate the absolute value for lymphocytes, neutrophils, eosinophils, segs or monocytes from the total white count and percent obtained on a differential.
32. Differentiate causes for pathological leukocytosis and correlate with the correct disease.
33. Identify eosinophils and basophils on a blood smear and clinically correlate increases to the correct condition or disease.
34. Analyze the function of all cells discussed in unit topic III.
IV. PLATELETS

35. Summarize (identify and name) chronologically the cells in the maturation series of the platelet.
36. Name the largest cell normally seen in a bone marrow smear.
37. Explain the function of the platelet
38. Estimate the platelet count by examining the platelets on a peripheral smear.
39. Clinically correlate normal and abnormal platelets on a blood smear.
40. Identify platelet satellitism on a peripheral blood smear stained with Wright’s stain. Explain the cause of platelet satellitism and demonstrate how to correct for it.
41. Describe pathological platelet disorders and assess the need for laboratory testing in these conditions. Recommend tests that may be useful in making a differential diagnosis.

V. ERYTHROCYTE METHODS- RBC COUNTS

42. Perform the enumerative procedures for RBCs to include manual and automated counts.
43. Explain pre-analytical, analytical, and post-analytical components of RBC manual and automated cell counts.
44. Calculate the correct number of cells counted when using the hemocytometer with different dilutions and volumes.
45. Perform testing on various types of hematology instruments such as Sysmex or Coulter. Trouble shoot each type of instrument and recognize when a discrepancy occurs. Devise a workable plan to correct the problem to the satisfaction of the instructor.
46. Recognize quality control discrepancies that may occur during the testing for RBC counts. Devise a plan to correct these discrepancies. (This objective may not be completely realized until the student has rotated through the hematology department.)
47. Clinically correlate abnormal RBC counts with pathological conditions.
48. Perform, solve quality control problems for, and clinically correlate results with the correct disease for hemoglobin and hematocrit testing.
49. Perform and calculate retic counts. Calculate retic production index. Apply clinically the results obtained on a retic count.
50. Calculate the RBC indices to include MCV, MCH, MCHC and clinically correlate results with disease states.
51. Support the terms macrocytic, microcytic and normocytic, hypochromic, normochromic and hyperchromic with the correct RBC indices and anemia.

VI. ERYTHROCYTE METHODS- OTHER TESTING

52. Perform, solve quality control problems for, and clinically correlate results with the
correct disease for the following RBC tests:
 Sickle Cell (slide and tube test)
 Erythrocyte Sedimentation Rate (ESR)
 Osmotic fragility
 Hemoglobin Electrophoresis
 Ham’s Test
 Schilling test

53. Predict what additional testing would be helpful in establishing a diagnosis for diseases associated with the testing in #52.

54. Perform, solve QC problems for and resolve any issues that may occur while utilizing the following stains:
 Wright’s Stain
 Prussian Blue
 Supravital Stains

55. Clinically correlate results for #54 with the correct disease.

56. Assess RBC enzyme testing that leads to the diagnosis of G-6-PD Deficiency.
 Justify how hemolytic episodes result from drug use when there is a G-6-PD deficiency.

57. Recognize blood smear abnormalities resulting from RBC enzyme deficiencies.

58. Resolve the likely disease when interpreting tests such as the Schillings Test.

VII. ERYTHROCYTE DISEASE

59. Define anemia.

60. Assign the various anemias into categories using the following descriptive words:
 - Macrocytic
 - Normocytic
 - Microcytic
 - Hemolytic anemia
 - Hyperchromic
 - Hypochromic
 - Normochromic

Describe the clinical picture associated with each of the different types of anemia to include iron deficiency, acute blood loss, chronic blood loss, anemia of chronic disease, folate deficiency, Pernicious anemia, and various hemolytic anemias. Solve case studies related to the various anemias

61. Identify, interpret, and clinically correlate blood smears seen in an anemia and place in one of the categories listed in objective #60 with the use of RBC indices and/or other laboratory results

62. Describe pancytopenia and explain pathological conditions found in this type of hematology disease. List the causes of pancytopenia and the clinical prognosis. other laboratory test results.
63. Describe the general characteristics to include the following for the group of
diseases discussed in class grouped together and called hemoglobinopathies:
- Blood smear morphology
- Supportive laboratory test results
- Patient symptoms
- Genetics
- Treatment
- Cause of the disease
64. Explain the genetics associated with hemoglobin S disease and trait and all the
other hemoglobinopathies.
65. Draw genetic charts showing the inheritance patterns from different parents with
the following diseases:
- Hemoglobin S disease and trait
- Hemoglobin C disease and trait
- Hemoglobin D disease and trait
- Hemoglobin E
- Thalassemia major and minor
- Sickle Cell-Hemoglobin C
- Sickle Cell-Beta thalassemia
- Alpha thalassemia
66. Appraise peripheral blood smears for hemoglobinopathies and clinically correlate
the findings to the correct disease.
67. Select the appropriate reagents utilized in the testing for hemoglobinopathies.
68. Analyze case studies of hemoglobinopathies. Suggest testing which may be helpful
and make a correct diagnosis.
69. Describe polycythemia and clinically correlate testing results with this disease.

VIII. LEUKOCYTE METHODS

70. Perform leukocyte enumerative procedures in both manual and automated
methods.
71. Clinically correlate results of WBC counts to the appropriate clinical disease or
as normal.
72. Make judgments concerning WBC counts for the following:
- Need for additional testing
- Validating methodology
73. Perform manual WBC differentials (100 cells). Recognize and correctly identify both
normal and abnormal WBCs
74. Correct the calculation for the WBC count when NRBC are present on the
peripheral blood smear.
75. Perform eosinophil counts and clinically correlate the results with disease or health.
76. Describe lupus erythematosus to include the following:
 • Patient characteristics
 • ANA Test results
 • Fluorescent patterns seen in ANA and antigen indicated
 • Prognosis
 • Treatment
 • Other useful and supportive lab tests
 • Etiology

77. Identify an LE cell and explain how it is created in the laboratory.
78. Identify a Tart cell and explain how it is created.

79. Perform and clinically correlate results with the disease for the following stains:
 • Peroxidase
 • Periodic-Acid –Schiff
 • Sudan Black
 • Leukocyte Alkaline Phosphatase
 • TdT
 • Cytochemical esterases
 • Tartrate Resistant Acid Phosphatase

80. Correlate the leukemia with the appropriate stain that is positive.
81. Apply the use of stains to conditions other than leukemia such as leukemoid reactions.
82. Calculate a LAP score and correlate the score with health or disease.

IX. LEUKOCYTE ANOMALIES

83. Explain the formation of the Philadelphia chromosome and correlate its presence to the appropriate leukemia. Relate which two chromosomes are affected and how they are affected.
84. Identify the peripheral blood smears seen in the various WBC anomalies and diseases listed below. Explain the etiology of each:
 • Pelger Huet
 • May-Hegglin
 • Chediak-Higashi
 • Alder-Reilly
 • Hunter’s
 • Hurlers.
 • Sezary syndrome
 • Chronic granulomatous disease
 • Infectious mononucleosis

85. Clinically correlate the peripheral blood smear of the anomalies with the disease.
86. Assess the test results on a patient with elevated band neutrophils, and correlate this result with the possibility that this may be a patient with a Pelger Huet anomaly. Recognize “pince nez” and correlate it to Pelger Huet anomaly.
87. Solve case studies of the WBC anomalies and diseases discussed in class.
88. Discuss Sezary Syndrome to include etiology, blood picture, and test results. Solve case study results on patients with Sezary Syndrome.
89. Identify auer rods and correlate to the appropriate leukemia. Describe the composition of auer rods.
90. Explain cluster of differentiation (CD) and correlate to specific diseases.
91. Relate the severity of neutrophilic leukocytosis to the five factors given in class.
92. Clinically correlate toxic granulation and Dohle bodies to a severe infection. Identify both of these on a peripheral blood smear.
93. Assess factors associated with infectious mononucleosis to include etiology, blood picture, serology test results, physical characteristics, and transfer of the disease.
94. Solve case studies given in class on patients with infectious mononucleosis.
95. Describe parasitic infections caused by *Plasmodium vivax*, *Plasmodium malariae*, *Plasmodium falciparum*, and *Plasmodium ovale*. Identify the presence of the parasites on a peripheral blood smear. Solve case studies in class on patients with malaria.
96. List inherited disorders of lipid metabolism and identify the characteristic cell found in Gaucher’s disease and Neimann-Pick disease.
97. Analyze the characteristics of leukemoid states and leukemia with the goal of differentiating the two. Relate LAP scores to each.
98. Describe the classification given to the respective leukemias with regard to acute vs. chronic and the predominate cell type found in each.
99. Determine the most likely leukemia from case studies given in class by assessing the hematology lab test results, age of patient, the cytochemistry (stains), peripheral and bone marrow smears, and physical characteristics of the patient.
100. Analyze these cases to identify if one or more of the characteristics do not seem to correlate. Devise a plan to determine the cause of this discrepancy.
101. Describe the FAB classification with regard to morphology and cytochemical evaluation of leukemic cells. List the words that are described by FAB.
102. List the characteristics of chronic leukemia and related lymphoproliferative disorders.
103. Recognize the clinical blood picture and correlate lab tests with the diagnosis of all the leukemias.
104. List and interpret the lab findings for chronic myeloproliferative disorders. Clinically correlate blood smears of these disorders to the disease. Suggest further testing that may aid in the diagnosis.
105. Evaluate characteristics that are found in myelodysplastic syndromes to include patient clinical symptoms, blood smears and lab tests. Recognize the need for further testing and list helpful tests that can distinguish the various clinical diagnoses for myelodysplastic syndromes.
106. Describe the etiology, physical characteristics of the patient, peripheral and bone marrow pictures, laboratory test results for the following:
 - Hodgkins disease
 - lymphomas
• multiple myeloma
• Waldenstrom macroglobulinemia
• Lupus erythematosus

Assess case studies for all the diseases listed above and correlate laboratory results to the correct disease. Evaluate if a discrepancy exists in the case study, or if one of the results does not correlate with the rest of the characteristics, and devise a plan to determine the cause of the discrepancy.

X. PLATELETS

107. Perform platelet counts and clinically correlate results with disease or health to include counts done either manually or by instrument.

108. Perform, describe, interpret results and clinically correlate test results for the following platelet/coagulation/hematology tests:
 - Platelet aggregation studies (include change in %T and all aggregating agents listed in your text)
 - Closure Time—PFA-100 (Siemens)
 - PT
 - PTT
 - Ivy Bleeding Time

109. Explain pre-analytic, analytical, and post-analytical components of the platelet tests listed in #108.

110. Analyze quality control discrepancies and devise a plan to correct the discrepancies for all platelet tests.

111. Identify platelets, both normal and abnormal, on a peripheral smear, colored picture, photomicrograph, or Power-Point slide.

112. Define thrombocytopenia, thrombasthenia and thrombocythemia.

113. Describe the test results and clinical symptoms found in ITP and TTP.

114. Describe the etiology, test correlation to disease, and differentiating tests useful in the following disease/condition/situation:
 - Glanzmann’s thrombasthenia
 - Von Willebrand’d disease
 - Bernard Soulier syndrome
 - Platelet storage pool defects
 - ITP
 - TTP
 - Wiskott-Aldrich syndrome
 - Alport’s syndrome
 - Hermansky-Pudlak syndrome
 - TAR syndrome
 - Aspirin ingestion
 - Cardiopulmonary bypass in surgery
115. Perform an estimated platelet count on a peripheral blood smear. Calculate the estimate on blood smears stained by automated stainer and by manual staining.

116. Apply knowledge to make decisions about the need for future testing when examining abnormal platelet counts.

XI BONE MARROW IN PATHOLOGICAL STATES

117. Interpret normal and abnormal bone marrow slides and correlate to the correct disease.

118. Identify a normal and abnormal M:E ratio and correlate to the correct disease.

119. Describe possible causes for an abnormal M:E ratio.

120. Perform a bone marrow differential blood count.

121. Identify normal and abnormal blood cells on a stained bone marrow smear.

122. Describe the possible sites for a bone marrow aspiration.

123. Describe the steps utilized in a bone marrow aspiration and obtaining the sample for analysis.

124. Interpret bone marrow differentials for correlation of results with the patient’s diagnosis. Recognize when results do not correlate with the patient’s symptoms and peripheral blood findings. Investigate why this has occurred and resolve the discrepancy.

XII. HEMATOLOGY INSTRUMENTATION

125. Perform testing and describe the methodology on the following instruments/instrumentation used in the hematology department to include solving quality control discrepancies:
 - Coulter Counter—Coulter Model A—including VCS Technology
 - Beckman Coulter LH
 - Flow Cytometry
 - Coulter STKS
 - Platelet Aggregometer
 - Aerospray Slide Stainer
 - Stago STA Compact Coagulation Instrument
 - Platelet Function Analyzer 100 (PFA 100)
 - Sysmex XN3000
 - HemataStat II
 - Hema-Tek 2000
 - ESR Auto Plus

126. Troubleshoot and identify discrepancies when an instrument malfunctions or an instrument reports test results incorrectly. Develop a plan to correct this problem.

127. Interpret hematology instrument histograms and correlate the results to the appropriate disease or health. Correlate histogram shifts to left and right with
128. Describe tests which are calculated by the various instruments. Assess disorders from instrumentation test results to include the following:

- Red cell parameters such as RBC count, Hgb, Hct, MCV, MCH, MCHC, along with RBC histograms
- RDW
- Platelet counts, MPV, PDW
- Leukocyte differential analysis
- PT
- PTT
- Other histograms and scatter plots

129. Identify hematology instrument testing results that occur as the result of cold agglutinins in the patient’s sample. Correct this problem when operating the hematology instrument. Correlate peripheral blood smear with cold agglutination.

130. Research various hematology instruments and methods and identify which instrument and/or method best meets your laboratory’s needs.

131. Evaluate the workflow in the RMH Hematology Department, and make suggestions for improvement. Create a flow diagram of the workflow in hematology, and give suggestions that will shorten the turn-around-time for testing.

132. Design a hematology department for a 400 bed hospital including reagents, instruments, staffing, space and quality control methods. Present the design in class.

CASE STUDIES IN HEMATOLOGY

133. Analyze test results to identify the disease being presented by the case study.

134. Identify the need to do additional testing when making a diagnosis.

135. Identify test results that do not correlate.

136. Describe the over-all disease process in the patient for all case studies.

137. Develop a positive attitude so that their knowledge in hematology has progressed to the point that functioning in a hematology department as a clinical laboratory scientist is eminent.

138. Demonstrate a professional image when discussing hematologic diseases.

STUDENT PRESENTATION OF TWO HEMATOLOGY DISEASES

139. Feel comfortable when discussing hematology diseases.

140. Develop a deeper understanding of the two diseases presented by the student.

141. Answer questions concerning their topic

142. Utilize the information presented by the other students as a general review for the course.

143. Feel at ease when making an oral presentation.
XIII. MOLECULAR DIAGNOSTIC TECHNIQUES IN HEMATOPATHOLOGY

144. Explain and identify the fundamental structure of DNA.
145. Define and explain nucleic acid probe.
146. List the purpose of the most commonly used molecular diagnostic assays.
147. Describe the procedure and clinically correlate the results for the following tests:
 Southern blot, PCR, Reverse transcriptase PCR, and in Situ hybridization.
148. Identify a potential clinical application for each molecular diagnostic test. Describe the procedure for obtaining the sample.
149. List the steps in the PCR procedure describing each in detail.
150. Perform PCR testing while running the correct controls.
151. Solve complex problems in the hematology department involving QC results, testing discrepancies, instrument malfunction, sample inconsistencies and reagents; and devise a plan to correct these problems to the satisfaction of the instructor.
Instructor: Abigail L. Blosser, B.S., MLS(ASCP)CM

Method of Instruction: Lecture, discussion, case studies, question and answer

Course Goal: To educate the student in clinical immunology so that they may function as an entry-level scientist in a clinical immunology laboratory.

Pre-Requisite Courses: One course in college level immunology and a minimum of three years of college.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/30/17</td>
<td>I. Immunology</td>
<td>Part 1</td>
</tr>
<tr>
<td>10/31/17</td>
<td>a. Introduction to Immunology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Tissues and Cells of the Immune System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. The Immune Response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Nonspecific Immune Response</td>
<td></td>
</tr>
<tr>
<td>11/1/17</td>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>11/2/17</td>
<td>e. Major Histocompatibility Complex</td>
<td>Part 2</td>
</tr>
<tr>
<td></td>
<td>f. Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Type I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Type II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Type III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Type IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Tumor Immunology</td>
<td></td>
</tr>
<tr>
<td>11/3/17</td>
<td>II. Techniques in Immunology</td>
<td>Part 2</td>
</tr>
<tr>
<td></td>
<td>a. Structure and Function of Immunoglobulins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Antigens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Haptens and Adjuvants</td>
<td></td>
</tr>
<tr>
<td>11/6/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>11/7/17</td>
<td>c. Antigen and Antibody Interactions</td>
<td>Part 2</td>
</tr>
<tr>
<td>11/8/17</td>
<td>i. Precipitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Agglutination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Assays Involving Complement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Immunoassays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Cellular Assays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Flow Cytometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Nucleic Acid Probes and Blotting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Techniques (Molecular Diagnostics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Nucleic Acid Probes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Polymerase Chain Reaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Immunoblotting</td>
<td></td>
</tr>
<tr>
<td>11/9/17</td>
<td>III. Clinical Immunology</td>
<td>Part 3</td>
</tr>
<tr>
<td>11/10/17</td>
<td>a. Infectious Disease Serology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Streptococcal Infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Immunology: Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Biological Hazards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Standard Precautions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Government Regulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. OSHA Revision 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Chemical Hygiene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Specimen/Sample Preparation</td>
<td></td>
</tr>
</tbody>
</table>
CLINICAL IMMUNOLOGY LECTURE SCHEDULE

DATE: TOPIC: READING ASSIGNMENT:

i. Pre-analytical component of immunology tests
ii. Patient factors
iii. Stage in disease factors
d. Immunology – Simple and Compound Dilutions
e. Reporting Immunology Results
f. Infectious Disease
 i. Syphilis

11/13/17

Exam 3

11/14/17

ii. Borrelia burgdorferi, Lyme’s Disease
iii. Rubella, Rubeola, other viruses
iv. Epstein-Barr Virus
 1. Heterophil Antibody
 2. VCA
 3. EA
 4. NA
 5. IF and ELISA
v. Fungal Diseases
 1. Cryptococcosis
vi. Tuberculin Skin Test

11/15/17

vii. Viral Hepatitis – primary and secondary viruses
 1. Hepatitis A (HAV)
 2. Hepatitis B (HBV)
 a. Transmission
 b. Complications of HBV
 c. Dane Particle – different parts
da. Testing: Antigens and Antibodies graph
e. ELISA for detection of HBsAg
f. Other tests for HBV
 3. Hepatitis C (HCV)
 4. Hepatitis D (HDV) (Delta Hepatitis)
 5. Hepatitis E (HEV)
 6. Hepatitis G (HGV)
viii. Human Immunodeficiency Virus, HIV, AIDS
 1. History
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>HIV-1</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>HIV-2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Effect of HIV on the Immune System</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Epidemiology of AIDS</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Clinical Manifestations of AIDS (CDC Criteria)</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Progression of disease to Opportunistic diseases</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Treatment for AIDS</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Lab Diagnosis of AIDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. ELISA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Western Blot – Interpretation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Nucleic Acid Testing for AIDS</td>
<td></td>
</tr>
<tr>
<td>11/16/17</td>
<td>ix. Miscellaneous</td>
<td>Part 4</td>
</tr>
<tr>
<td>1.</td>
<td>Rickettsia</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Mycoplasma</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Legionella pneumophilia</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Autoimmune – Lupus (LE) and RA</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Organ – Specific Autoimmune Diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Hashimoto’s thyroiditis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Grave’s disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Myasthenia Gravis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Multiple sclerosis – oligoclonal bands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Diabetes mellitus type I</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Agammaglobulinemia-Bruton’s X-linked</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Cytomegalovirus</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Toxoplasmosis</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Rotavirus</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>HTLV-I</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>HTLV-II</td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td>Transplantation Immunology and Immunosuppression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Autograft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Isograft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Allograft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Xenograft</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>11/17/17</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:

The student will at the completion of the lectures on immunology, reading assignments and class discussions by attaining a minimum of 70% accuracy on a written test and/or oral exam.

1. Define immunology, antigen, hapten, antibody, immunoglobulin, and immune complex.

2. Identify, list types, and compare innate (natural) and adaptive (acquired) immunity.

3. Classify an example of immunity as being innate, adaptive, cellular or humoral.

4. Explain the difference between active, passive, or adoptive immunity and apply this knowledge to a specific immune response.

5. Describe the cells involved in the immune system and give the function of each.

6. Explain the functions of the lymphatic system and the spleen.

7. Describe the four major groups of cytokines and give the predominate cell source and its primary function.

8. Describe specificity and immunological memory.

9. Explain antigen recognition involving B-cells and T-cells. Identify the immunoglobulin classes most commonly found on the surface of circulating B lymphocytes in the peripheral blood of normal persons.

10. Describe, identify, and apply primary and secondary antibody response to an antigen.

11. Explain the difference between T-dependent and T-independent antigens.

12. Explain the process of the activation of T-helper, T-cytotoxic lymphocytes, and B-cells.

14. Explain, interpret and apply the mechanisms of the nonspecific immune response.
15. Explain, interpret and apply the major histocompatibility complex.

16. Explain the pathological process involved in the four types of hypersensitivity to include types I, II, III, and IV.

17. Describe and identify examples of hypersensitivity types I, II, III and IV.

18. Explain the process of immune complex deposition in tissues.

19. Describe tumor immunology to include natural immunity to tumors and T cell mediated immunity to tumors, including cytokines and cytotoxic T-cell immune mechanisms.

20. Draw and describe the parts and give the functions of the different immunoglobulins to include the Fc component, Fab component, J chain, secretory component, heavy chain, light chain, constant region, variable region, hinge region and define isotype, allotype, and idiotype.

21. Describe how the immunoglobulins differ with regard to function and structure. Describe the subclasses of IgG.

22. Explain how the immunoglobulin classes are detected.

23. Describe the production of monoclonal antibodies and explain how they are used in the laboratory.

24. Describe the importance and methodology for quantitating immunoglobulins in body fluids other than serum. Interpret test results and clinically correlate with the appropriate disease when light chains are seen in the urine of patients with multiple myeloma.

25. Explain the difference between immunogen and antigen, and describe the five factors that contribute to immunogenicity.

26. Define the terms hapten, adjuvant, antigenic determinant, and epitope.

27. Explain how antigens and antibodies interact, and describe their detection in the laboratory. Identify where antigen-antibody complexes are likely to be deposited in the body and why.

28. Draw, label the parts, and interpret the precipitation curve to include zone of equivalence, prozoning, and postzoning.

29. Recognize and interpret the various types of precipitation reactions to include the Ouchterlony technique and identity, partial identity and non-identity as well as other types of precipitation.

30. Describe the various applications of precipitation reactions.

31. Compare the differences between precipitation and agglutination.
32. Explain the phases of agglutination when a lattice is formed.

33. Describe the various types of agglutination reactions and the methods of enhancing the reactions.

34. Draw the three complement cascade systems. Indicate the functions of each segment in the complement cascade system. List the activators for each of the systems.

35. Describe testing for type I hypersensitivity (total IgE or allergen-specific IgE) reactions to include skin prick tests, intradermal testing, (older) RAST test, chemiluminescent enzyme immunoassay, and Immuno CAP.

36. Explain, interpret, and apply the various labeled immunoassays.

37. Describe and apply the various methods utilizing immunofluorescence and nephelometry in the evaluation of the immune system and disease.

38. Explain, interpret, and apply clinically flow cytometry, lymphocyte transformation, mixed lymphocyte culture, cytotoxicity, measurement of immune activation, and neutrophil function assays.

39. Describe the biochemical principles utilized in the use of nucleic acid probes. Give specific examples of the clinical utility of molecular techniques in the laboratory.

40. Explain, interpret, and apply clinically Southern blot, Northern blot, and Western blot. Discuss the importance of molecular techniques in the clinical laboratory.

41. Describe the principles of the polymerase chain reaction.

42. Clinically correlate lab test results from molecular techniques/diagnostics to disease or health.

43. Describe a Streptococcal infection with regard to clinical symptoms and poststreptococcal sequelae.

44. Interpret, run, and clinically correlate test results for the following methods: ASO and anti-streptolysin “O” enzyme inhibition test, ADN-B, Rapid-Cycle Real Time Polymerase Chain Reaction, group A strep direct probe test (DNA chemiluminescence probe assay) and rapid screening tests.

45. Analyze procedural discrepancies that may occur during testing in immunology, and devise a course of action and solve those discrepancies. Examples might include controls which do not meet pre-established criteria, false positive results, false negative results etc.

46. Make judgments concerning the need for future testing with any of the methods listed in #44.

47. Explain reasons for false positives and false negatives for testing in #44.
48. Describe syphilis with regard to the causative organism, clinical symptoms, and useful laboratory tests. Clinically correlate testing results with the disease. Solve case studies giving testing results and symptoms by giving the disease such as syphilis or some other disease. Solve problems as they arise during this process.

49. Explain the stages of syphilis and which tests are positive in the various stages.

50. Describe direct detection tests for syphilis and in what stage they are positive.

51. Explain the serology tests which are useful in the diagnosis of syphilis, indicate the difference between the treponemal and nontreponemal tests and at which stage these tests are useful.

52. Describe Borrelia burgdorferi, the causative agent of Lyme disease, and list the organism’s major antigenic components. Explain the transmission of the disease, and the various symptoms of each stage of the disease. Describe the appearance of IgG and IgM in the disease. Solve case studies utilizing this knowledge.

53. Describe the organism, symptoms, and complications of acute rubella virus infection, and explain the major abnormalities associated with congenital rubella infection. Describe the appearance of IgG and IgM during the course of these rubella infections.

54. Describe, interpret, and apply the following tests utilized in rubella antibody testing: Hemagglutination inhibition, passive hemagglutination, solid-phase immunoassays, and sucrose density gradient ultracentrifugation. Solve case studies utilizing testing results from the methods and identify the disease.

55. Explain the diseases caused by Epstein-Barr virus, and describe, interpret, and apply tests used to detect heterophile antibodies. Solve case studies using testing results to identify the disease.

56. Explain the characteristics, epidemiology, and clinical manifestations of all the hepatitis viruses. Identify in a hepatitis B virus picture the surface antigen, core antigen and viral DNA.

57. Describe the various methods of testing for all hepatitis viruses discussed in class, and solve case studies with lab results by correctly correlating the disease with the results. For example, interpret test results for HBsAg, anti-HBc IgM, anti-HAV IgM, and other test combinations and select the correct virus and recent vs acute vs chronic disease. Explain the graph in the textbook showing all test results and correlation with the stage of hepatitis virus disease.

58. Describe the structure, life cycle, epidemiology, clinical manifestations, and current therapy for AIDS (HIV virus.)

59. Explain, interpret, and apply clinically the methods utilized in the laboratory diagnosis of HIV infections. Solve case studies by correlated the lab results with the disease or health. Interpret Western Blot test results for HIV and explain the criteria that the CDC recommends for a positive test.
60. Describe the following: Rickettsia diseases, mycoplasma, legionella, toxoplasma, cytomegalovirus, and human T-cell leukemia virus. Correlate testing results with the appropriate diagnosis. Analyze any discrepancies in quality control results as they arise in the testing, and determine an appropriate course of action to resolve the problem. Solve case studies by correlating test results with disease or health.

61. Explain, interpret, and clinically correlate cold agglutinin test results utilized in the diagnosis for mycoplasma. Analyze cold agglutinin test results when results vary and determine the appropriate course of action.

62. Describe tolerance, anergy, apoptosis, and the relationship between immune activation and tolerance.

63. Explain autoimmunity, its general mechanism, and the theories that cause autoantibody production.

64. Correlate clinically the patterns seen in the antinuclear antibody test to the appropriate disease or health.

65. Describe, interpret, and apply testing results for the following diseases: Lupus erythematosus, rheumatoid arthritis, Sjogren's syndrome, scleroderma, polymyositis-dermatomyositis, autoimmune hemolytic anemia and ankylosing spondylitis.

66. Analyze test results listed in #65 for false positives and false negatives.

67. Describe how non-organ specific and organ-specific autoimmune diseases differ.

68. Describe and identify the autoimmune antibodies and changes in the immune system associated with the following: myasthenia gravis, diabetes mellitus, idiopathic adrenal failure, autoimmune bullous skin diseases, Good-pasture’s syndrome, and spermatozoa antibody-mediated infertility. Solve case studies utilizing this information.

69. Explain the differences between primary and secondary immune deficiencies.

70. Recognize, interpret, and clinically apply the lab findings of hypergammaglobulinemias monoclonal or polyclonal based on serum protein electrophoresis scans. Draw the densitometer tracing of a normal serum protein electrophoresis on cellulose acetate media with a buffer pH of 8.6 and label the following:

- Anode
- Cathode
- Direction of migration
- Gliamma globulin
- Albumin
- Alpha 1
- Alpha 2
- Beta
• Positive electrode
• Negative electrode
• Identify where IgG, IgA, IgM, IgD migrate

71. Describe the differences between lymphoma and leukemia, and interpret lymphocyte markers used in the classification of leukemias and lymphomas.

72. Explain autologous, syngeneic, allogeneic, and xenogeneic as they relate to a graft.

73. Describe and interpret tests used to phenotype the ABO blood group and HLA-A, HLA-B, HLA-D, and HLA-DR.

74. Describe the immunosuppressive effect of certain drugs such as cyclosporin A etc.

75. Explain why in some cases a bone marrow transplant is a better choice than a peripheral blood stem cells transplant and vice versa.

76. Describe the difference between acute and chronic graft-versus-host disease.

77. Analyze immunology quality control charts and devise a course of action to correct occurrences where the controls do not meet the QC rules.

78. Validate testing results.

79. Analyze lab results that do not correlate and determine a course of action to determine the cause of the lack of correlation.

80. Solve case studies involving immunological diseases where clinical symptoms are given along with laboratory testing results and either the diagnosis or listings of additional tests are requested.

81. Interpret immunofluorescence studies with regard to linear vs “lumpy, bumpy pattern” and correlate with the appropriate disease.

82. Analyze case studies and correlate these to the appropriate hypersensitivity reaction.

83. Describe and draw the three complement pathways. List the things that activate each individual pathway. Explain the functions of the various parts of all three pathways.

84. Explain what disease results from a deficiency of each complement component.

85. Describe the CD nomenclature and correlate to the appropriate cell type. Calculate the absolute CD 4, CD 8 or other designated cell type from other lab results to include total WBC count, percent of lymphocytes and percent of CD cell type.

86. Describe what influences the deposition of immune complexes in the tissues.
87. Explain what enhances the deposition of immune complexes in the tissues of experimental animals.

88. Analyze case studies and make judgments as to the appropriate lab test which will support the suspected diagnosis.

89. Describe diseases that affect the immunological responses of neutrophils to include G-6-PD Deficiency, Chediak-Higashi Syndrome and Chronic Granulomatous Disease.

90. Explain transplant immunology to include reasons for rejection, what immune mechanisms are involved in the rejection, how many days does it take for rejection to occur, and what immune elements may be found in the rejected organ.

91. Describe immunophenotyping by flow cytometry and identify the following CD designations:
 - B cells
 - T cells
 - NK cells
 - Lymphoid cells
 - Any others listed in class

92. Interpret hemagglutination, hemagglutination inhibition, latex agglutination, latex agglutination inhibition, precipitation, and any other characteristic immunology test results discussed in class to include the identification of the following:
 - Titer
 - Prozone
 - Postzone
 - Zone of equivalence
 - Validity of results
 - Invalid results
 - Quality control results

93. Correlate chemistry enzyme test results with a patient who has hepatitis such as AST and ALT results as well as other lab test results.

94. Describe the various rickettsial diseases and identify what organism causes the disease.

95. Analyze case studies giving test results for ANA, ASO, complement, and RA (as well as other immunology tests) and select the most likely disease in the patient.

96. Explain the policies and procedures recommended by OSHA regarding precautions to take when working with blood and body fluids in a lab.

97. Describe the precautions recommended by the CDC to avoid potential infection to lab workers.

98. Demonstrate the procedure for handling needles in the clinical lab.

99. Identify the various symbols utilized in the clinical lab for biohazard etc.
100. Name and describe MSDS sheets used in the lab by the employee.

101. Define and perform serial dilutions.

102. Calculate the concentration of a substance using the dilution factor.

103. Define antibody titer.

104. Calculate the concentration of a compound dilution.

105. Compare the characteristics of the acute and chronic phases of illness.

106. Calculate the value of a single dilution.

107. Calculate absolute cell count.
MT 402 Immunohematology

Instructor: Cyndee S. Lowe, B.S., MLS(ASCP)CM

Method of Instruction: Lecture, discussion, laboratory exercises, question and answer

Required Courses: Sixteen semester hours of biology and a college level math class

Course Goal: To introduce the student to immunohematology and to prepare the student to function as an entry level technologist/scientist in the immunohematology department.

Textbook:

Other References:
Henry’s Clinical Diagnosis and Management by Laboratory Methods, McPherson, Richard A and Matthew R. Pincus, 23rd edition, 2017

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/22/17</td>
<td>Introduction</td>
<td>Chapters 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>a. History of blood banking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. General overview of transfusion medicine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Pre-analytical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Analytical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Post-analytical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Genetics for blood banking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Inheritance patterns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Population genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Immunology for blood banking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Immune response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Immunoglobulins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Complement</td>
<td></td>
</tr>
<tr>
<td>6/27/17</td>
<td>Blood Group Antigens</td>
<td>Chapters 3 and 4</td>
</tr>
<tr>
<td></td>
<td>a. Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Antigenicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Antigen specificity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Variables affecting reactivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Antigenic tolerance</td>
<td></td>
</tr>
<tr>
<td>6/29/17</td>
<td>Grading Reactions Lab</td>
<td></td>
</tr>
<tr>
<td>7/6/17</td>
<td>ABO Blood Group System</td>
<td>Chapter 6</td>
</tr>
<tr>
<td></td>
<td>a. ABH antigens and genetic inheritance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. ABO antibodies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. ABO testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Soluble ABO antigens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Unusual ABO phenotypes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. ABO discrepancies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Weak or missing reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Miscellaneous discrepancies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Resolution</td>
<td></td>
</tr>
<tr>
<td>7/11/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Reading Assignment</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>7/13/17</td>
<td>Vi. Antiglobulin Testing</td>
<td>Chapter 5</td>
</tr>
<tr>
<td></td>
<td>a. Principle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Antihuman Globulin reagents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Direct Antiglobulin test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Indirect Antiglobulin test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Validation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Factors affecting AHG test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Sources of error</td>
<td></td>
</tr>
<tr>
<td>7/18/17</td>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>7/20/17</td>
<td>VII. Rh System</td>
<td>Chapter 7</td>
</tr>
<tr>
<td></td>
<td>a. Antigens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Nomenclature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Variants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Testing Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. LW system</td>
<td></td>
</tr>
<tr>
<td>7/25/17</td>
<td>ABO, Rh, and Weak D Lab</td>
<td></td>
</tr>
<tr>
<td>7/27/17</td>
<td>VIII. Other Blood Group Systems</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>8/1/17 &</td>
<td>a. Lewis system</td>
<td></td>
</tr>
<tr>
<td>8/3/17</td>
<td>b. MNS system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. P system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Li system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Kell system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Duffy system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Kidd System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Lutheran system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Other smaller systems</td>
<td></td>
</tr>
<tr>
<td>8/8/17</td>
<td>Review of Blood Group Systems</td>
<td></td>
</tr>
<tr>
<td>8/10/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>8/15/17</td>
<td>IX. Antibody Detection and Identification</td>
<td>Chapters 9 and 12</td>
</tr>
<tr>
<td></td>
<td>a. Antibody screen</td>
<td></td>
</tr>
<tr>
<td>8/17/17</td>
<td>Antibody Screening Lab</td>
<td></td>
</tr>
<tr>
<td>8/22/17,</td>
<td>b. Antibody Panels</td>
<td></td>
</tr>
<tr>
<td>8/24/17, &</td>
<td>c. Methods</td>
<td></td>
</tr>
<tr>
<td>8/29/17</td>
<td>i. Rule out procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Problems in resolution</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>8/31/17</td>
<td>Case studies</td>
<td>Chapter 10</td>
</tr>
<tr>
<td></td>
<td>X. Compatibility Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Selecting donor units</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Crossmatch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Special circumstances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Phenotyping</td>
<td></td>
</tr>
<tr>
<td>9/5/17 &</td>
<td>Blood Donor Selection and Phlebotomy</td>
<td>Chapter 13</td>
</tr>
<tr>
<td>9/7/17</td>
<td>a. Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Physical exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Medical history</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Information given for donor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>consent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Donor phlebotomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Apheresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Autologous donation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Donor reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Testing and labeling of components</td>
<td></td>
</tr>
<tr>
<td>9/12/17</td>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>9/14/17 &</td>
<td>XII. Components and Therapy</td>
<td>Chapters 13, 14,</td>
</tr>
<tr>
<td>9/19/17</td>
<td>a. Whole blood</td>
<td>and 15 (also parts</td>
</tr>
<tr>
<td></td>
<td>b. Red blood cells</td>
<td>of Chapters 1 and</td>
</tr>
<tr>
<td></td>
<td>c. Platelets</td>
<td>17)</td>
</tr>
<tr>
<td></td>
<td>d. Plasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Special transfusion considerations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Special transfusion practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. General transfusion processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Case studies</td>
<td></td>
</tr>
<tr>
<td>9/21/17 &</td>
<td>XIII. Transfusion Reactions</td>
<td>Chapters 16 and 18</td>
</tr>
<tr>
<td>9/26/17</td>
<td>a. Hemolytic reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Immediate non-hemolytic reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Delayed non-hemolytic reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Investigation</td>
<td></td>
</tr>
<tr>
<td>9/28/17</td>
<td>XIV. Hemolytic Disease of the Newborn</td>
<td>Chapter 19</td>
</tr>
<tr>
<td></td>
<td>a. Pathophysiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Factors effecting immunization and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>severity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Clinical manifestations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Case studies</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>10/3/17</td>
<td>XV. Autoimmune Hemolytic Anemias</td>
<td>Chapter 20</td>
</tr>
<tr>
<td></td>
<td>a. Cold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Warm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Drug induced</td>
<td></td>
</tr>
<tr>
<td>10/5/17</td>
<td>Exam 4</td>
<td></td>
</tr>
<tr>
<td>10/10/17</td>
<td>XVI. HLA System and Paternity Testing</td>
<td>Chapters 21 and 22</td>
</tr>
<tr>
<td></td>
<td>a. Clinical significance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Exclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XVII. Polyagglutination</td>
<td>Online appendix</td>
</tr>
<tr>
<td>10/12/17</td>
<td>XVIII. Quality Assurance & Modern Technologies</td>
<td>Chapters 23-27</td>
</tr>
<tr>
<td></td>
<td>a. Federal accrediting agencies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. AABB quality system essentials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. QC in the blood bank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Legal and ethical issues</td>
<td></td>
</tr>
<tr>
<td>10/17/17</td>
<td></td>
<td>Review Session 1</td>
</tr>
<tr>
<td>10/19/17</td>
<td></td>
<td>Review Session 2</td>
</tr>
<tr>
<td>10/24/17</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
School of Medical Laboratory Science
Immunohematology Objectives
June 2017

The student will at the completion of the lectures, reading assignments, and verbal instructions on immunohematology by attaining a minimum of 70% on a written or oral exam:

INTRODUCTION

1. Explain the meaning of pre-analytical, analytical and post-analytical components of blood banking
2. Give examples of troubleshooting methods in blood banking
3. Interpret results obtained in blood banking and clinically correlate the results
4. Assess the various services found in a typical blood bank
5. Discuss the inheritance patterns exhibited by various blood group systems
6. Explain why the study of population genetics is important in Blood Banking
7. Calculate allele and gene frequencies using the Hardy-Weinburg formula

BLOOD GROUP ANTIGENS AND ANTIBODIES

8. Define the terms introduced in the text and lecture
9. Discuss several factors affecting antigenicity.
10. Contrast the effects of number, density, and location of antigen sites on antigen reactivity.
11. Describe antigenic tolerance.
12. Discuss the criteria involved in determining the clinical significance of a blood group antibody.
13. Given a series of reactions, determine the reaction temperature and whether immune or naturally occurring antibodies are present

IN VITRO ANTIGEN-ANTIBODY REACTIONS

14. Name and briefly describe several lines of defense and the factors influencing antigen-antibody reactions including the cells involved.
15. Discuss how the following mechanisms aid in enhancing agglutination:
 a. Centrifugation.
 b. Albumin.
 c. Antihuman sera.
 d. IgM antibodies.
 e. Chemically modified IgG antibodies.
16. Name several enzymes used in blood bank and discuss advantages and disadvantages of each
17. Given an RBC antigen, determine if that antigen would be enhanced, destroyed or not affected by enzymes
18. Given a set of reactions, determine the next procedure to be performed (absorption, elution or inhibition.
19. List 4 different types of reagents used in blood bank testing.
20. Describe the difference between complete and incomplete antibodies.
21. Briefly describe the action of each of the common enhancement media.

ANTIGLOBULIN TESTING

22. State the principle of the antiglobulin test.
23. Contrast the differences between the direct and indirect antiglobulin tests including the principle, uses and procedure.
24. Assess results of the IAT; determine acceptability of those results and additional action to be taken.
25. Assess results of the DAT; determine the acceptability of those results, the antibody class and the probable source of the antibody.
26. List factors affecting the antiglobulin test procedure, which result in false positives.
27. List factors affecting the antiglobulin test procedure, which result in false negative.
28. State the components of polyspecific Anti-Human Globulin Serum (AHG), including preparation and applications.
29. Discuss the uses, advantages and disadvantages of the anti-complement component in AHG reagents.

ABO BLOOD GROUP SYSTEM

30. Describe the inheritance and biochemistry of the ABO system antigens and the corresponding antibodies.
31. List the major ABO phenotypes and their frequencies in various racial populations.
32. Given a specific ABO antibody, describe its immunoglobulin class, mode of stimulation and clinical significance.
33. Describe the inheritance and biochemistry of the H antigen, its immunoglobulin class, its mode of stimulation, clinical significance, its interaction with the Se system, and its effect on the expression of ABO antigens.
34. Describe the Bombay Phenotype and its clinical significance.
35. Given a set of reactions, determine if a weak subgroup of the ABO antigens is present, its clinical significance and what further testing should be performed, if indicated.
36. Given phenotype or genotypes of parents, predict the phenotypes and genotypes of the offspring.
37. Given a set of reactions, evaluate and identify technical problems that might be present, discuss the cause of inaccurate results and recommend methods to correct these problems.
38. Given results of a forward and reverse typing, evaluate for technical problems and/or discrepancies, classify the discrepancies as involving serum or cells and select the method most useful in resolving the problem or discrepancy.
39. Evaluate the effects of polyaagglutination on red cell testing, the categories, confirmation procedures, and an example of each.
40. Correlate other information from a patient's history that may aid in resolving an ABO discrepancy.
41. Briefly describe the significance of rouleaux, prozone, and panagglutination in ABO testing.

THE Rh SYSTEM

42. Compare the Wiener, Fisher-Race, and Rosenfield theories of inheritance and convert notations from one nomenclature into another.
43. Describe the biochemical characteristics of the Rh antigen, the major antigens and their frequencies.
44. Evaluate factors resulting in the expression of the weak D and the Rh null phenotype.
45. Describe the characteristics of Rh antibodies (immunoglobulin classes, their mode of stimulation, and their clinical significance in transfusion and/or HDN).
46. Explain the dosage effect in Rh antigen-antibody reactions.
47. Analyze causes of false positives and false negatives in Rh testing.
48. Describe what RBC morphologic abnormality is exhibited in individuals with the Rh null phenotype.
49. Evaluate Rh results, determine if a discrepancy exists and describe the methods to resolve any problems.
50. Evaluate Rh results and determine which blood type is acceptable for transfusion including Rh_null individuals.
51. Given a specific Rh genotype, determine what antibodies may be produced, their mode of stimulation and discrepancies caused when typing, if any.

MISCELLANEOUS BLOOD GROUP SYSTEMS

52. Discuss the Kell, Duffy, Kidd, MNSs, P, I, Lutheran and Lewis blood group systems to include:
 a. Major alleles and their relative frequency and dominance patterns
 b. Biochemistry of antigens including those affected by enzymes
 c. Methods of antibody stimulation for each antigen.
 d. Immunoglobulin class of antibodies directed to each major antigen.
 e. Unusual patterns of inheritance seen in various races including null phenotypes
 f. Phase of testing in which the antibodies are most often detected, whether “naturally occurring” or ‘immune’ and the clinical significance, including transfusion reactions and HDN.
53. Differentiate the antibodies that show dosage from those that do not
54. List diseases associated with the major blood group systems.
55. Define "high frequency" and "low frequency" antigens. List five antigens in each category.
56. Discuss the relationship between the Lewis system and secretor status including substance present in secretions based on a given genotype.
57. Explain the changes of the Lewis antigens that occur during pregnancy and in the newborn.
58. Discuss the interaction of the H, ABO, Se and Le systems in the expression of Lewis antigens.
59. Discuss the Duffy phenotype associated with resistance to infection by Plasmodium knowlesi and P. vivax.
60. Discuss the major characteristics of the blood group systems introduced in the text and manual.
61. List the antibodies which were formerly classified as HTLA and describe their clinical significance.
62. Explain the relationship between Bg antigens and the HLA system.
63. Define compound antibody. Give two examples.

ANTIBODY DETECTION

64. List the phases used in antibody detection and discuss the importance of each.
65. Discuss the use of antibody detection in the following situations:
 a. Transfusion of RBC’s
 b. Prenatal/Neonatal Evaluations
 c. Disease Processes
 d. Transfusion Reactions
66. Explain the use of RBC reagents, AHG and enzymes in antibody detection and identification.
67. List clinically important and commonly encountered antigens possessed by reagent RBC’s.
ANTIBODY IDENTIFICATION

68. Given panel results, access the antibody present, use the rule out technique, and identify the antibody. Describe how the “rule of three” is used to ensure antibodies are identified with at least 95% accuracy.

69. Given patient results, determine what information from the medical history may aid in antibody identification.

70. Compare reagent RBC’s from antibody screen and antibody panel cells.

71. Explain how a patient’s phenotype may aid in antibody identification.

72. Recognize reaction patterns associated with the most frequent problems that occur in blood banking and outline steps to resolve these problems.

73. Define elution, adsorption, and neutralization and explain their uses.

74. Given the results of an antibody identification panel, evaluate the results and determine if the antibody is exhibiting dosage.

COMPATIBILITY TESTING

75. Given a patient’s crossmatch results, determine if it is safe to transfuse and, and, if not safe, what action should be taken next.

76. Recall four objectives of pretransfusion testing.

77. Explain the importance of and how to positively identify a patient.

78. Describe the proper specimen for the crossmatch procedure and list required information for proper specimen labeling and identification.

79. Explain the importance of reviewing a patient’s transfusion history.

80. List preliminary tests for a patient sample and explain the importance of each.

81. Given the results of a patient’s ABO, Rh, antibody screen and panel, select suitable whole blood, packed cells, and/or plasma for transfusion.

82. Describe two main functions the crossmatch procedure serves, its effectiveness and limitations.

83. Contrast the major vs. minor crossmatch procedures.

84. List the considerations for the following:
 a. Transfusion of Non-Group Specific Blood
 b. Transfusion of Plasma Products
 c. Massive Transfusion
 d. Intrauterine and Neonatal Transfusions
 e. Autologous Transfusion
 f. Directed Donation
 g. Emergency transfusion

85. Given a patient’s surgical procedure, hematology results and blood typing, determine the use of the “Type and Screen” versus a full crossmatch.

86. Discuss the re-identification of a patient prior to transfusion.

BLOOD DONOR SELECTION AND PHLEBOTOMY

87. List the parameters of donor physical examination used to determine acceptability.

88. Given the results of a prospective donor’s medical history and physical results, determine eligibility and indicate action to be taken if not able to donate.

89. Describe two methods of preparing a venipuncture site for blood donation.

90. Describe the equipment used in collecting blood.

91. Discuss phlebotomy, care of donor during and after blood collection, and processing of a unit.

92. Given a donor reaction, access the situation and determine what action should be taken.

93. Given a donor’s surgical status and the results of screening tests, determine the special donor category and describe the donor criteria for that category.

94. List information in the computer that must be evaluated before donor is allowed to donate.

95. Calculate the amount of blood to be drawn and to adjustment of the volume of anticoagulant, for donors who weigh less than 110 pounds.
ANTICOAGULANTS, STORAGE, AND DONOR TESTING

96. Discuss RBC metabolism, the metabolic pathways, the mechanisms for cell survival and in vivo function
97. Describe the chemical composition of the RBC membrane and the functions of each component
98. List the globin chains found in HbA, HbA2, HbF, and glycosylated hemoglobin and their respective concentrations found in vivo
99. Describe the function of hemoglobin and its effect on the oxygen dissociation curve
100. Describe biochemical and metabolic changes related to red cell storage.
101. Support the statement; “The Hgb/O2 dissociation curve results in a shift to the left during red cell storage.”
102. Define red cell viability, shelf life, and "lesion of storage".
103. Discuss blood preservative solutions and the storage conditions for each
104. Describe the anticoagulant/preservative solutions routinely used in blood banking. Include their composition, mechanism of function, purpose, and shelf-life:
105. Discuss the current trends in anticoagulant/preservative research.
106. Evaluate how the use of an additive system increases red blood cell viability.
107. Discuss types of blood substitutes currently available
108. Describe the metabolism and function of platelets
109. Describe the testing required in the processing of donor blood.

COMPONENTS

110. Given a specific component, indicate the acceptable anticoagulants, storage conditions, and shelf life for that component.
111. List the advantages and disadvantages of RBC freezing, the preservative used and storage conditions
112. Given patient results and the number of units transfused, calculate the expected in vivo change.
113. Explain the format for ABO, Rh, and antibody screen testing.

WBC, PLATELET ANTIGENS & APHERESIS

114. Differentiate between and HLA and an HGA antibody.
115. Assess the need to test for platelet antibodies.
116. Differentiate between cytapheresis, leukapheresis, plasmapheresis and platelet pheresis.
117. Briefly describe the setup of a continuous flow and an intermittent flow pheresis instrument.
118. Discuss donor preparation for pheresis procedures.
119. Given the date and type of last pheresis, determine when a donor would be eligible to donate again.
120. Recall the minimal yield for pheresis platelets from a single donor.
121. Discuss testing and storage of platelets and granulocytes.

TRANSFUSION REACTIONS

122. Discuss the following reactions as to symptoms, causes, prevention and therapeutic measures:
 a. Acute hemolytic transfusion reactions;
 b. Febrile non-hemolytic transfusion reactions;
 c. Bacterial contamination;
 d. Anaphylactic reactions;
 e. Allergic reactions;
 f. Circulatory overload; and
 g. Non-cardiogenic pulmonary reactions.
123. Discuss the Pathophysiology of the three interrelated mechanisms involved in the acute hemolytic transfusion reaction.
124. List the four most commonly identified antibodies causing HTR.
125. Name causes of the delayed hemolytic transfusion reaction.
126. Given patient results, determine if a transfusion reaction has taken place, the type of reaction, the type of immunization response, and what action should be taken.
127. Discuss the common transfusion associated diseases, including clinical manifestations, modes of prevention, and methods of diagnosis:
128. Describe the requirements for maintaining transfusion records and the type of records that are maintained.

HEMOLYTIC DISEASE OF THE NEWBORN

129. List the four mechanisms, which must be present for HDN to occur
130. Given a patient result, determine the category of hemolytic disease of the newborn, the severity of the disease, further testing needed, expected results, treatment methods, and the probable outcome of the disease.
131. Given the mothers antibody status, assess the appropriate blood product to be used in an intrauterine transfusion, the method for selecting the blood, the type, amount and preparation of the blood, and the expected outcome
132. Given the results of the Kleihauer-Betke test, explain the principles of the test, determine the amount of the fetal-maternal hemorrhage and the number of units of Rh Immune globulin indicated
133. Explain the mechanism of red cell destruction in HDN.
134. Differentiate between the effects of red blood cell destruction in the fetus and in the neonate.
135. Discuss the basis upon which an amniocentesis is performed when diagnosing HDN.
136. Discuss the testing that occurs to monitor an infant following an exchange transfusion.
137. Discuss the principle of preventing Anti-D HDN using Rh immune globulin.
138. Define kernicterus.
139. Explain why the fetal liver is incapable of conjugating bilirubin.
140. Explain how ABO incompatibility between mother and fetus may actually protect against the development of Rh HDN.

AUTOIMMUNE HEMOLYTIC ANEMIAS

141. Given patient results, characterize the type of hemolytic anemia present, including its thermal amplitude, type of protein coating the red cells, and method of red cell destruction.
142. Given patients results, determine if benign or pathologic cold auto agglutinins are present, including laboratory procedure, the expected lab results, problems encountered in testing, and treatment.
143. Differentiate between drug-induced immune hemolytic anemia and idiopathic warm autoimmune hemolytic anemia.
144. Identify the medications responsible for the four classic mechanisms of drug-induced hemolysis, the routine laboratory findings and mode of red cell destruction.
145. Given a patient’s symptoms, determine the type of anemia present; explain the laboratory procedures to be performed, and clinical findings expected.
146. Discuss the mode of red cell hemolysis in WAIHA (warm autoimmune hemolytic anemia) and the challenges in serological testing and selection of blood for transfusion due to the presence of warm autoantibody.
GENETICS AND PATERNITY TESTING

147. Discuss the processes of cell division
148. Describe and differentiate the principles of inheritance
149. Prepare and discuss pedigree charts including the expression of dominant and recessive traits.
150. Contrast and discuss the terms genotype and phenotype.
151. Describe several factors that influence the suitability of genetic markers to be used in paternity testing.
152. List 6 RBC and WBC antigen systems commonly used in paternity testing and the reliability of each system.
153. Describe necessary records that must be maintained with any paternity testing case.
154. Describe testing methods for RBC antigens, HLA antigens, RBC enzymes, serum proteins and DNA testing, including indications for the test, technical problems, false results and confirmatory testing.
155. Given the results of paternity testing, determine if a direct (first order) or an indirect (second order) exclusion is applicable and determine the paternity index, probability of paternity and the probability of exclusion.
156. Assess the advantages and disadvantages of DNA, Polymorphism, RFLP, and PCR methods in DNA testing.

QUALITY ASSURANCE

157. Name three Federal Accrediting Agencies and three peer review groups discussed in lecture, their purpose, and the primary objectives of these agencies or groups.
158. Describe the "general considerations" behind the procedure manual, checking results and records, proficiency testing, review committee and adverse effects, reporting abnormal findings and continuing education.
159. Given a specific piece of equipment, determine the type of preventative maintenance required, the QC necessary, and the intervals of testing.
160. Given information regarding a specific activity, determine if it qualifies as QA or QC.
161. Given the results of quality control results, determine the acceptability of the results, access the problem, if any, and the corrective action to be taken.
162. Given a specific blood bank reagent, discuss the proper quality control method for that reagent, the frequency of quality control checks, the expected results, and action to be taken if quality checks are not acceptable.
163. Describe QC involved in the following: blood component preparation and storage, performing any necessary calculations involved.
MT 403 Clinical Chemistry

Instructor: Abigail L. Blosser, MLS(ASCP)CM

Method of Instruction: Lecture, discussion, question and answer

Goal: Education of the student in clinical chemistry so that they may function as an entry level scientist in the clinical chemistry laboratory.

Pre-requisite Courses: 16 semester hours of chemistry, 1 course in biochemistry or organic chemistry, 1 college math course

Textbook:
Fundamentals of Clinical Chemistry and Molecular Diagnostics, Tietz, edited by Burtis and Bruns, W.B. Saunders, 7th edition, 2015

Other References:

Henry’s Clinical Diagnosis and Management by Laboratory Methods, by Richard A McPherson and Matthew R. Pincus, 2017

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/9/17</td>
<td>I. Chemistry Lab Principles (Instrumentation and Safety in the Lab)</td>
<td>Chapter 1, 4-11, 15, 16, 24, 48</td>
</tr>
<tr>
<td>6/13/17</td>
<td>a. Pipets (volumetric vs. serological)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Units of measurement/Metric System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. Analytical Procedures & Instrumentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Photometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Beer’s Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Components of spectrophotometers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Flame photometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Atomic absorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Light Emission & Scattering Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Luminescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Fluorescence and flow cytometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Fluorescence polarization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Nephelometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Turbidimetry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Chemiluminescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Electrochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Osmometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Chromatography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Radioactivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Immunochemical Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. pH Meter and trouble shooting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Nucleic acid techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Automation in the clinical laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Electrophoresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Statistics/Problem Solving/Cases (review from Orientation)</td>
<td>Chapter 2, 3, 7, 8</td>
</tr>
<tr>
<td></td>
<td>Evaluation of Methods, Informatics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Fundamental concepts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Standard deviation and Gaussian Distribution (% values in +1SD, +2SD, +3SD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Mean, Median, Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Levey, Jennings QC charts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Coefficient of variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Variance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Accuracy & Reproducibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vii. Reference values/ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>viii. Quality assurance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ix. Establish reference values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV. Proteins and Amino Acids</td>
<td>Chapter 18</td>
</tr>
<tr>
<td>6/15/17</td>
<td>a. Metabolism & Synthesis & Function</td>
<td></td>
</tr>
<tr>
<td>6/20/17</td>
<td>b. Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Clinical Correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Individual proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Albumin</td>
<td></td>
</tr>
</tbody>
</table>
CLINICAL CHEMISTRY LECTURE SCHEDULE

DATE: TOPIC: READING ASSIGNMENT:

ii. Globulin
iii. Ceruloplasmin, haptoglobin etc.
e. Proteins in other body fluids

6/22/17 V. Enzymes Chapter 19, 34
6/27/17
a. Nomenclature
b. Kinetics-Michaelis-Menten Curve
c. Function
d. Methodology and clinical correlation
 i. AST
 ii. ALT
 iii. CK
iv. Aldolase
v. LD – Isomeric Forms
vi. Alkaline Phosphatase
vii. Gamma-Glutamyltransferase
viii. Amylase
ix. Lipase
x. Cholinesterase
xi. Acid Phosphatase
xii. Cardiac function tests
 1. Troponin
 2. Myoglobin
 3. BNP
 4. CRP (C-reactive protein)
 5. CK and Isoenzymes
xiii. Other tests for prostate
 1. PSA, Prostate Specific Antigen

6/29/17 VI. Carbohydrates Chapter 22, 33
6/29/17
a. Glucose
 i. Factors to consider for glucose testing
 1. Metabolism of carbohydrates
 2. Pre-analytical, analytical, post-analytical components
 3. Methodology
 4. Clinical correlation
 ii. Diabetes Mellitus
 1. Glucose tolerance curves & criteria for diagnosis
 2. Other tests for monitoring diabetes mellitus
 a. Glycohemoglobins
 iii. Ketone bodies
 iv. Other tolerance tests
b. Glycogen Storage Disease
c. Lactate and Pyruvate
7/6/17
Exam 1

7/11/17 VII. **Lipids, Lipoproteins, and Apolipoproteins**
7/13/17
 a. Definitions and properties
 b. Cholesterol (total, LDL, and HDL) and fatty acid
 c. Prostaglandins and triglycerides (glycerol esters)
 d. Lipoproteins and apolipoproteins
 e. Hyperlipidemia causes and coronary heart disease
 f. Lipoprotein disorders
 g. Measuring lipids and lipoproteins
 h. Analytical and physiological variations in measurements
 i. Apolipoprotein methodology

7/18/17 VIII. **Vitamins**

7/20/17 IX. **Endocrinology**
7/25/17
 a. Anatomy & Physiology of glands
 i. Pituitary
 ii. Ovary
 iii. Testis
 iv. Placenta
 v. Pancreas
 vi. Adrenals
 vii. Pineal
 viii. Hypothalamus
 b. Action and control of hormone secretion
 c. Protein hormones
 i. Insulin etc.
 d. Anterior pituitary hormones
 i. GH
 ii. ACTH
 iii. Endorphins
 iv. LH
 v. FSH
 vi. TSH
 e. Steroid hormones
 f. Adrenocortical steroids
 i. Cortisol
 ii. Aldosterone

Chapter 23

Chapter 27

Chapter 25, 26, 33, 40, 41
CLINICAL CHEMISTRY LECTURE SCHEDULE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/27/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>8/1/17</td>
<td>X. Electrolytes and Other Topics</td>
<td>Chapter 24, 35</td>
</tr>
<tr>
<td>8/3/17</td>
<td>a. Sodium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Potassium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Bicarbonate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Total CO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Methods and clinical correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Plasma and urine osmolality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Point of care testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Fe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Cu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Sweat test and cystic fibrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l. Wilson’s Disease</td>
<td></td>
</tr>
<tr>
<td>8/8/17</td>
<td>XI. Blood Gasses and pH</td>
<td>Chapter 24, 35, 36</td>
</tr>
<tr>
<td>8/10/17</td>
<td>a. Anatomy and physiology of the lungs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Physical principles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Buffer systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Acid-base regulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Metabolic acidosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Metabolic alkalosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Respiratory acidosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Respiratory alkalosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Clinical correlation</td>
<td></td>
</tr>
<tr>
<td>8/15/17</td>
<td>XII. Renal Function (Non-protein Nitrogen Metabolites)</td>
<td>Chapter 21, 35</td>
</tr>
<tr>
<td></td>
<td>a. Renal function tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Non-protein nitrogen compounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Urea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Creatinine and Creatine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Creatinine clearance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Uric acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Clinical correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Tubular and glomerular diseases</td>
<td></td>
</tr>
</tbody>
</table>
f. Anatomy and physiology of the kidney

8/17/17

Exam 3

8/22/17 XIII. **Thyroid and Parathyroid Function**

a. Anatomy and physiology of the parathyroids
b. Calcitonin
c. Thyroid hormones and regulation
d. Clinical correlation – Disease + Test Results
 i. Hypothyroidism
 ii. Hyperthyroidism
 iii. Euthyroid
e. Methodology
f. Calcium and phosphorus metabolism
 i. Hyperparathyroidism
 ii. Hypoparathyroidism
g. Parathyroid hormone
h. Anatomy and physiology of the thyroid gland
 i. Feedback system between Pituitary, Hypothalamus, and Thyroid
 1. Primary vs. Secondary hypothyroidism and hyperthyroidism

8/24/17 XIV. **Therapeutic Drug Monitoring**

a. Specific drug groups
 i. Antiepileptic drugs
 ii. Cardioactive drugs
 iii. Bronchodilators
 iv. Antibiotics
 v. Antipsychotic drugs
 vi. Anti-depressants
 vii. Neuroleptic drugs
 viii. Antineoplastic drugs
 ix. Immunosuppressants

8/29/17 XV. **Toxicology**

8/31/17

a. Methodology
b. Clinical correlation
c. Instruments

9/5/17

Exam 4

9/7/17 XVI. **Bilirubin Metabolism**

a. Methods
b. Clinical correlation (liver physiology and
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/12/17</td>
<td>XVII. Gastric, Pancreatic, Intestinal Function</td>
<td>Chapter 38</td>
</tr>
<tr>
<td></td>
<td>a. Gastrointestinal hormones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Gastric function tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Gastric analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Total titratable acidity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Other gastric tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Pancreas function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Sweat ulcer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Peptic ulcer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Zollinger-Ellison Syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Anatomy and physiology of the stomach, pancreas intestine</td>
<td></td>
</tr>
<tr>
<td>9/14/17</td>
<td>XVIII. Chemistry Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Molarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Normality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. MEq/L conversion to mg%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Dilutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Other problems</td>
<td></td>
</tr>
<tr>
<td>9/19/17</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>9/21/17</td>
<td>Exam 5</td>
<td></td>
</tr>
<tr>
<td>9/26/17</td>
<td>XIX. Tumor Markers and Pregnancy</td>
<td>Chapter 20, 43, 44</td>
</tr>
<tr>
<td></td>
<td>a. Bio-chemical aspects of pregnancy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Testing the pregnant patient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Human Chorionic Gonadotropin (hCG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Alpha-Fetoprotein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Testing for neural tube defects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Testing for fetal lung maturity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Foam test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Other tests</td>
<td></td>
</tr>
<tr>
<td>9/28/17</td>
<td>XX. Hemoglobin, Porphyrins, Disorders of Porphyrin, Metabolism</td>
<td>Chapter 28, 29</td>
</tr>
<tr>
<td></td>
<td>a. Hemoglobin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Porphyrin and heme chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Primary porphyrin disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Lab diagnosis of porphyria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Analytical methods</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>10/3/17</td>
<td>Clinical Chemistry Problem Solving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each student will be assigned a Clinical Chemistry Problem to solve. The student will present the problem and the resolution to the class. (Computer Code = “Chm Prob”) +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Spooky Review”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case Studies</td>
<td></td>
</tr>
<tr>
<td>10/5/17</td>
<td>Student Presentation of Assigned Diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each student will be assigned diseases to present in class.</td>
<td></td>
</tr>
<tr>
<td>10/10/17</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>10/12/17</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>10/17/17</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
School of Medical Laboratory Science
Clinical Chemistry Lecture Objectives

The student will at the completion of the chemistry lectures, reading assignments and chemistry rotation by obtaining a minimum of 70% on a written exam, practical exam or rotation evaluation unless otherwise stated:

Topic: Chemistry Lab Principles
- Pipets, Safety, Instrumentation, Quality Control/Statistics, Beer’s Law, Instrumentation

1. Correctly pipet with volumetric, serological, micro, TC, TD, and frosted ring pipets.

2. Make conversions in the Metric System. Explain OSHA and CDC mandated safety plans for the laboratory (MSDS sheets, chemical hygiene plan, exposure control plan.)

3. Perform calculations using Beer’s Law. Make judgments concerning the use of standards to either draw a curve or calculate an unknown from a standard. Apply Beer’s Law with regard to graphs on linear versus log graph paper and plots for concentration as compared to absorbance or %T.

4. For the following instruments, the student will:
 - operate according to the procedure manual to satisfaction of instructor
 - correct problems when instruments malfunction
 - determine when it is appropriate to call the instrument company for help in trouble shooting problems
 - explain the principle of the methodology utilized on each instrument
 - clinically correlate test results on the instruments with disease or health
 - calculate results appropriate for different instruments, for example, calculation of the Rf value for chromatography

 Fluorometer
 Atomic absorption
 Nephelometer
5. Explain the principles of the following methods:
 - Turbidimetry and Nephelometry
 - Electrochemistry, Potentiometry, Coulometry, Biosensors
 - Electrophoresis, Immunoelectrophoresis, and Immunofixation electrophoresis
 - Immunochemical techniques, ELISA
 - Fluorescence polarization immunoassay and Automation—Robot Arms

6. Select the best instrument for clinical chemistry testing according to the following:
 - Data on the variety and number of tests done in the department
 - Cost of each test
 - Cost of reagents
 - Availability of instrument
 - Cost of technologist time

7. Select the best method for use in the laboratory by examining the standard deviation, mean, and calculating the CV.

8. Define the following to include formula if applicable:
 - Buffer
 - ASCP
 - Analytical sensitivity
9. Calculate the acceptable range for a control in the laboratory when the mean and standard deviation are given.

10. Analyze Levey-Jennings quality control charts by doing the following:
 • Identify an upward and downward shift and trend
 • Apply quality control rules to determine the possible cause of an error
 • Correct an error

11. Define accuracy, precision, and variance.

12. Calculate the value of the unknown when the method is linear from the O.D. of the unknown, the O.D. of the standard, and the concentration of the standard.

13. Interpret values for the standard deviation and coefficient of variation.

14. Draw a normal Gaussian Curve and give the % of values included under + and - 1 SD, + and - 2SD and + and - 3SD.

15. Calculate the mean, median, mode and standard deviation.

16. Assess the similarity between the use of reference and measuring light beams in double-beam atomic absorption spectrophotometry for use as the internal standard in flame emission photometry.

Topic: Proteins & Amino Acids

17. Analyze and perform serum, plasma, and CSF protein electrophoresis scans by doing the following:
 • Clinically correlate scans with the appropriate disease
 • Identify the scan as being from either serum, plasma, or CSF
 • Perform the scan according to the procedure manual to the satisfaction of the instructor

18. Clinically correlate test results from patients with multiple sclerosis.

19. Correlate clinically test results for total protein, protein electrophoresis, albumin and globulin to the correct disease.

20. Draw protein electrophoresis scans and label the negatively charged electrode, positively charged electrode, anode, cathode, direction of migration, and order of migration of the various proteins.
21. Assess protein electrophoresis scans to determine if trailing or other distortion has occurred during the electrophoresis. Correct these occurrences by altering the voltage etc.

22. Describe the metabolism, function, synthesis and catabolism for all the proteins discussed in class.

23. Write the principle of all the protein methods discussed in class and include causes for false positives and negatives.

24. Analyze protein lab results and determine if future testing might be beneficial in making the patient diagnosis. Recommend which tests might be the most helpful.

25. Describe the proteins in other body fluids, their methods for measurement, and clinically correlate the test results to health or disease.

26. Determine the validity of all protein testing.

27. Analyze quality control results and identify any discrepancies that may occur. Devise and implement a plan to correct these discrepancies.

28. Evaluate laboratory data to establish reference range criteria, and to determine alternate test methods.

29. Evaluate laboratory data to resolve possible inconsistent results/sources of error.

**Topics: Enzymes, Carbohydrates and Lipids.

30. Interpret lipid profile results and correlate results with disease or health. Explain the metabolism of the various lipids discussed in class. Correlate serum/plasma specimen appearance with elevated and normal lipid test results.

31. Calculate the LDL value from the triglyceride, total cholesterol and HDL cholesterol. Determine when this formula may not be used to calculate the LDL cholesterol.

32. Analyze patient results (cholesterol, triglyceride, HDL and LDL cholesterol, apoproteins, CRP--high sensitivity, homocyststeine) to determine which patient has an increased or decreased risk for coronary artery disease.

33. Describe an L/S Ratio and clinically correlate the result to a mature fetus or immature fetus.

34. Explain the principles of all lipid methods, to include false positives and negatives, specimen requirements and plasma/serum appearance (normal and elevated).

35. Explain and clinically correlate the following with regard to carbohydrates:
• Metabolism “at rest” and following exercise
• Glucose tolerance test and correlate results to disease
• The Diabetic Association recommendations for making a diagnosis of diabetes mellitus
• Glycohemoglobin and its usefulness for diabetic patients
• Glycogen storage disease
• Metabolism of lactate and pyruvate

36. Classify lipids using the two methods of electrophoresis and ultracentrifugation. Draw lipoprotein electrophoresis showing order of migration and sequence of fractions.

37. Interpret quality control measurements utilized in lipid, glucose and enzyme testing to determine if the method has accuracy and precision.

38. Correlate clinically the “good” and “bad” cholesterol. Write the normal values for all the lipid parameters.

39. Explain methodology & clinical correlate results for all methods to measure glucose. Write the formula for glucose oxidase to measure glucose.

40. Explain methodology & clinically correlate results for all lipids.

41. Describe enzyme nomenclature. Calculate enzyme values when sample dilutions are made.

42. Draw and explain the Michaelis-Menten curve labeling the parts and identifying first and zero order kinetics. Interpret the Lineweaver-Burk Plot.

43. Explain the various factors that affect enzyme reactions to include the following: substrate concentration, pH, temperature, activators, inhibitors, cofactors, enzyme concentration and coenzymes.

44. Explain the following for the list of enzymes:
 - Basic reactions that they catalyze
 - Diseases where they show an elevation and recommend useful additional testing
 - Variation in control results while performing the testing
 - Plan of action if test results do not meet established QC rules

 AST
 ALT
 Creatine Kinase CK
 Lactate Dehydrogenase LD
 Alkaline and Acid Phosphatase
 Gamma Glutamy Transferase
 Alpha Amylase and Lipase
 Cholinesterases
 Aldolase
 LD Isoenzymes
CK Isoenzymes
PSA (Prostate Specific Antigen)
Angiotensin-Converting Enzyme (ACE)
Chymotrypsin
Trypsin
5’Nucleotidase
Glutamate Dehydrogenase
Isocitrate Dehydrogenase
BNP (a cardiac hormone)

45. Describe the origin and function of each enzyme listed in number 44. Draw CK and LD electrophoresis showing order of migration from fastest to slowest fractions.

46. Discuss isoenzyme separation techniques for alkaline phosphatase to include heat and electrophoresis. List what isoenzyme disappears 1st, 2nd and 3rd with heating at 56 °C.

47. Describe test results which go up following a myocardial infarct to include CK and CKMB, LD, myoglobin, AST, troponin I and T, BNP to include the time that the elevation occurs following an MI, and how long the elevation lasts. Relate which test goes up first, second etc. and which comes down first, second etc. Explain which test or tests is/are more specific in determining a MI (myocardial infarction). Describe which tests are currently being used to evaluate patients with a possible myocardial infarct. Explain the use of homocysteine in evaluating patients with a MI.

48. Describe where on the Michaelis-Menten Curve that testing for enzymes should occur and why.

49. Calculate enzyme activity rate.

50. Assess the overall status and the fetal lung maturity for a fetus when the weeks of gestation, lecithin, sphingomyelin, bilirubin scan on amniotic fluid, and delta absorbance at 450 nm are given.

51. Determine the best course of action to follow when you are asked to perform a specialized chemistry test that you are familiar with but not exactly certain of the steps required in the test.

52. Analyze instrument results such as seen on an ion selective electrode and determine the course of action if a problem is discovered such as a message saying “repeated drift.”

Topics: Vitamins and Trace Elements

53. List the fat and water soluble vitamins and the foods that contain these vitamins.

54. Explain the principles for methods used to measure these vitamins.
55. Clinically correlate vitamin deficiency and excess with disease or health.

56. Describe the need for trace elements such as magnesium, iron, zinc, copper etc. Explain the etiology of Wilson’s disease and correlate lab results with the disease.

Topic: Endocrinology

57. Describe the action, biosynthesis, metabolism, control mechanisms, and site of production for the following: Analyze test results to determine the presence of pathology or health for the following: insulin, GH, Endorphins, LH, FSH, TSH, Steroid Hormones, Cortisol, aldosterone, Testosterone, Progesterone, Estrogens, Thyroid hormones, catecholamines, Serotonin, 5-HIAA, hCG, estriol, estradiol and all other hormones given in class. Solve case studies involving these hormones.

58. Explain the principles of the methods used to measure all the hormones in #1. Explain the anatomy & physiology of the following glands: adrenals, pituitary, hypothalamus, pineal, ovary, testis, placenta, and pancreas. Describe the Porter Silber Method and the Zimmerman reaction. Explain why sodium bismuthate is used prior to the Zimmerman reaction. Relate increases and decreases of the 17-ketosteroids to diseases/conditions. Explain what substances can cause interferences in the Porter-Silber reaction.

59. Analyze quality control data to determine if the control values for hormone tests meet the applied quality control rules. Formulate a course of action to identify and correct the error.

60. Research methodology for hormone testing, interpret data and select the best method.

61. Describe the function, metabolism, and site of production of catecholamine and serotonin. Explain pheochromocytomas or neuroblastomas and what laboratory tests are used to evaluate these conditions. Clinically correlate testing for serotonin and 5-HIAA with disease or health.

62. Clinically correlate test results to Addison’s Disease and Cushing Syndrome.

63. Draw the cyclopentanoperhydrophenanthrene ring and list all the substances that contain this ring system.

Topic: Electrolytes, Blood Gases, and pH

64. Calculate the anion gap and interpret the results. Assess if electrolytes are in balance. Analyze patient case studies and compare the calculated osmolality with the measured osmolality. Correlate these results with health or disease.

65. Describe and correlate clinically the intracellular and extracellular anions and cations. Describe the functions and all regulatory mechanisms for all the electrolytes. Define anion and cation and place each electrolyte in one of the two categories.
66. Explain the principles of methods for measuring the electrolytes. Discuss the **anatomy & physiology** of the lungs.

67. Assess quality control results to determine the validity of electrolyte test results.

68. Describe causes for increases and decreases in electrolyte values and correlate to the appropriate disease. Explain the effect on the body when electrolytes are outside the normal range.

69. Describe the four body buffer systems and identify the most important system. Discuss the bicarbonate to carbonic acid normal ratio and describe what affects this ratio. Define the term, “buffer.”

70. Calculate values using the Henderson-Hasslebach equation.

71. Describe the chloride shift and list electrolytes that participate in the shift. Describe what goes into the cell and what comes out.

72. Describe and interpret the hemoglobin-oxygen dissociation curve. Identify the effects of pH, temperature, pCO2, PRG/Hb ratio and O2 on the curve. Assess conditions which cause the curve to shift to the right or to the left.

73. Describe the principles of methods for measuring blood gases (to include PCO2 electrode, and PO2 Clark electrode), urine and serum osmolality, and pH (pH meter and calibration), and correlate these results clinically to pathology or health. Explain the measurement of P50 and clinically correlate it’s test results to disease or health. Define tonometry.

74. Describe the proper blood collection for blood gases. Determine when blood gases have not been collected correctly when given a situation or patient case study.

75. Solve case studies when given blood gas results and correlate these results to metabolic acidosis or alkalosis and respiratory acidosis or alkalosis. Explain the normal response of the body to these conditions.

76. Make judgments when deciding what types of future tests need to be done on a patient to determine or confirm a diagnosis concerning acid/base balance.

77. Analyze quality control data to make decisions concerning release of test results and need for repeat testing.

78. Evaluate laboratory data to establish testing procedures for alternate methods, and to establish reference range criteria.

78a. Calculate the osmolality from the BUN, glucose, and sodium.
78b. Describe ‘Point of Care’ Testing and explain why this form of testing emerged in the present health care system.

Topic: Non-Protein Nitrogen Metabolites and Renal Function

79. Describe the origin and metabolism of the non-protein nitrogenous compounds to include urea, creatinine, creatine, uric acid, and ammonia. Discuss the principles of methods used to measure these and clinically correlate test results to disease or health. Solve renal patient case studies given in class. Discuss the *anatomy & physiology* of the kidney.

80. Analyze nitrogen metabolites test results and determine the need for future testing to confirm or assess renal pathology. Distinguish between tubular and glomerular diseases by assessing test results.

81. Explain the special collection procedures necessary when collecting an ammonia sample.

Topic: Parathyroid Function

82. List the hormones associated with the parathyroid. Explain the principles for methods used to measure calcium, phosphorus, and magnesium. Describe the function and metabolism of calcium, phosphorus, and magnesium. Discuss the *anatomy & physiology* of the parathyroid gland.

83. Correlate clinically test results for serum calcium and phosphorus and urine calcium and phosphorus that are seen in hyperparathyroidism and hypoparathyroidism as well as other diseases.

84. Clinically correlate the test results for calcium, phosphorus, and magnesium to pathological conditions or health.

85. Describe the forms that calcium takes in the body.

86. Research methodology and determine the best method for measuring calcium, phosphate, and magnesium.

87. Analyze quality control data utilized in testing for calcium, phosphate, and magnesium and determine if there is a discrepancy in the data. Identify the cause of the discrepancy and devise a plan to correct the discrepancy.

Topic: Therapeutic Drug Monitoring and Toxicology

88. List drugs included in each of the following groups and explain the principles of methods used to measure these drugs. Discuss the therapeutic range for each of the drugs in these groups and explain how this range is reached. Discuss metabolites (and toxic effects) of these drugs that may accumulate in the patient and cause problems.
For Therapeutic Drugs:
- Antiepileptic Drugs
- Cardioactive Drugs
- Bronchodilators
- Antibiotics
- Antipsychotic Drugs
- Anti-Depressants
- Neuoleptic Drugs
- Antineoplastic Drugs
- Immunosuppressants

For Toxicology:
- Acetaminophen, salicylate, alcohols, barbiturates, carbon monoxide, cyanide, amphetamine, cannabinoids, cocaine, opiates, PCP, aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, magnesium, mercury, nickel, platinum, selenium, silicon, silver, and thallium

89. Assess test results for the drugs in the above groups and determine the validity.

90. Solve case studies given in class by correlating drug testing results with evidence of abuse, non-compliance with dosage, toxic levels of drug from exposure etc.

91. Perform research and interpret the data to determine the best and most cost effective methods for measuring therapeutic drugs and drugs of abuse.

92. Analyze data on area demographics and physician mix with the goal of setting up a therapeutic drug monitoring and toxicology laboratory.

93. Explain how many doses are usually necessary to reach a therapeutic range.

Topics: Hemoglobin, Myoglobin, Porphyrins, and Iron

94. Describe the metabolism and storage forms of iron. Describe transferrin and its function and principles of tests to measure it. Describe tests to measure iron and discuss the difference between iron methods and TIBC methods.

95. Interpret hemoglobin electrophoresis scans at an acid and alkaline pH. Correlate the appropriate disease state with the electrophoresis scan.

96. Correlate clinically Fe and TIBC test results for such diseases as Fe deficiency anemia, anemia of chronic disease, hemochromatosis, and all other diseases. List conditions that have an elevated serum iron and a decreased serum iron.

97. Describe the function and metabolism of hemoglobin and myoglobin.

98. Describe disorders that affect Fe metabolism.

99. Explain the principles of methods to measure hemoglobin, myoglobin, porphyrins, iron, and TIBC. Discuss the steps in the procedures. Assess test results to determine the validity of the test.
100. Interpret quality control data to identify occurrences where the quality control rules have not been met. Investigate to determine the cause of any discrepancies.

101. Describe the metabolism of porphyrins.

102. Describe the Watson-Schwartz test and correlate the results to health or disease.

103. Investigate new methodology for the testing of hemoglobin, myoglobin porphyrin, iron, and TIBC. Interpret research data and select the most accurate and precise method. Calculate and interpret the coefficient of variation when comparing methods.

Topics: Liver Function and Hepatitis

104. Explain the metabolism of bilirubin including all the steps presented in class. Identify characteristics of unconjugated and conjugated bilirubin. Describe why bilirubin is conjugated in the liver. Discuss the *anatomy and physiology* of the liver.

105. Correlate clinically test results with pre-hepatic, hepatic and post-hepatic jaundice as well as with other liver disorders.

106. Solve case studies from given patient results and correlate to the appropriate liver disease.

107. Describe principles of methods for bilirubin, urobilinogen, urobilin, liver enzyme tests, hepatitis and other liver function tests.

108. Make judgments concerning discrepancies in test results or when the Q.C. system does not meet the quality control rules. Devise a plan to determine the cause of discrepancy and correct it. For example, when the control for the method has been continuing to increase over a period of six days as seen on the Levy Jennings QC chart.

109. Recommend possible additional tests that may be helpful to confirm hepatic pathology or to monitor a known hepatic abnormality such as hepatitis, obstructive jaundice or pre-hepatic jaundice. Discuss the clinical correlation of alpha fetoprotein with hepatoma and pheochromocytoma.

110. Explain the different types of hepatitis that can lead to liver cancer.

111. Clinically correlate elevated test results for all stages and types of hepatitis to include HAV, HBV, HCV, HDV, HEV, and HGV. Indicate chronologically when tests are elevated or normal.

112. Research methods to determine the most cost effective, most accurate and reproducible procedures for evaluating hepatic function.

Topic: Gastric, Pancreatic, and Intestinal Function
113. Describe the gastrointestinal and pancreatic hormones, their action, and the stimulus for their release and control mechanisms. Explain the anatomy & physiology of the stomach, pancreas & intestine.

114. Explain the principles of the gastric and pancreatic function tests. Clinically correlate these test results to disease or health.

115. Describe the principle of the Sweat Test, clinically correlate the results to health or disease. Determine when there is a need to do additional testing to confirm a diagnosis of Cystic Fibrosis.

116. Explain the two pathological conditions called peptic ulcer and Zollinger-Ellison Syndrome. Describe the etiology.

117. Determine the validity of testing results and interpret quality control data with the purpose of identifying when the controls do not follow pre-determined quality control rules. Devise a course of action to identify the cause of any discrepancies.

118. Solve case studies given in class with patient results.

Topic: Clinical Chemistry Mathematics

119. Calculate molarity, normality, dilutions, conversions from mg% to mEq/L and from mEq/L to mg%, conversions from one concentration to another, osmolality from the glucose, urea nitrogen, sodium, and values using Beer’s Law.

120. Solve word problems involving all the calculations in #1.

121. Make a dilution from a concentrated stock solution correctly.

122. Analyze calculated osmolality vs. measured osmolality to determine correlation and possible cause when there is not correlation.

123. Calculate the volume of a concentrated solution that is required to make a known volume of a less concentrated solution.

124. Calculate the Osmolal Gap and make clinical correlations with the results obtained.

Topic: Bio-Chemical Aspects of Pregnancy

125. Describe the bio-chemical changes which occur in normal pregnancy and explain principles of methodology used in testing for human gonadotropin, estriol and alpha-fetoprotein. Clinically correlate the results of testing to health or disease.

126. Solve case studies given in class from patient results for the stage of pregnancy, viability of the fetus, or possible pathology.
127. Assess all quality control values for discrepancies in meeting rules for controls. Develop a plan to identify the cause for the discrepancy.

128. Research methods to identify the best and most cost effective methods for pregnancy testing.

129. Describe the methods available at the local drug store for pregnancy testing and relate why the results from these tests may not be the best assessment of pregnancy.

130. Describe substances or circumstances which may cause a false positive or negative in pregnancy testing methods.

Topic: Tumor Markers

131. Describe the various tumor markers (prostate-specific antigen, enzymes, CEA, neuron-specific enolase, serotonin etc.) and clinically correlate positive tests with pathological conditions or health.

132. Solve case studies given in class on patients with abnormal tumor marker results.

133. Explain the principles of the methods used to test for tumor markers. Relate why monoclonal antibodies make the methods more specific.

134. Describe growth-promoting oncogenes and their relationship to cancer. Explain the philosophy used in today’s medicine for the best chance of a cure for cancer.

135. Explain the staging of cancer and the use of the PSA test in this process.

136. Describe how enzymes and hormones may be used as tumor markers.

137. Assess the need for future testing in making a diagnosis of cancer and relate which tests would be especially useful in this process.

138. Explain the usefulness of using carbohydrate markers in the diagnosis of breast, ovarian, and endometrial carcinoma. This would involve the following: CA 15-3, CA 125, CA 549, CA 27.29, and MCA.

Topic: Clinical Chemistry Problem Solving

139. Analyze instrument data to identify a function problem and devise a course of action to solve the instrument malfunction.

140. Analyze the workflow in a clinical chemistry department or a toxicology lab and devise a plan to improve the turn-around time by improving the workflow in the department.
141. Interpret quality control results that do not meet the quality control rules, devise a plan to correct these controls, and explain the method of implementation for this plan to the class.

142. Examine a personnel problem in the clinical chemistry department, and devise a plan to solve the problem. Sample problems will be assigned in class.

143. Devise a plan to research a new method for performing one of the chemistry tests. Explain how you would investigate the various methods, and how you would select the best method.

144. Present a clinical chemistry problem to the class and explain how you would successfully solve the problem.

Topic: Student Assigned Case Presentations

145. Present three case studies (made up by the student) on three assigned disease topics. Present to the class along with a typed paragraph on each case. Demonstrate a verbal working knowledge of the area in chemistry covered by the case and be able to answer questions on the case asked by the other students. Clinically correlate test results on the cases with disease or health. Discuss the need for future tests and name tests which may be helpful in confirming a diagnosis.

Project an image of professionalism including appearance, dress, and confidence while presenting the case studies.

Show respect for self and others while presenting the case studies.

Communicate effectively in English to the class while presenting the case studies.

Topic: Thyroid Function

146. Describe the feedback system that regulates the thyroid function. Explain the anatomy & physiology of the thyroid gland.

147. Explain the thyroid hormones, their metabolism, and their regulation.

148. Clinically correlate hormone test results with hyperthyroidism, hypothyroidism, and euthyroidism.

149. Explain and run thyroid function tests. Interpret quality control results on these tests, and analyze discrepancies when they exist. Devise a plan to correct discrepancies.

150. Describe where the thyroid is located in the body and its relation to the parathyroid glands.

151. Explain the diseases that affect the thyroid.
Topic: Hemoglobin and Porphyrins

152. Discuss the structure and function of hemoglobin with regard to biochemical composition, physiology and clinical significance.

153. Describe the four thatassemias to include causes and clinically correlate lab tests with each.

154. Discuss the “hereditary persistence of hemoglobin F.”

155. Explain the following terms:
 • Porphyrin
 • Porphobilinogen
 • Porphyria

156. Write the biosynthetic pathway of heme and discuss the physiological functions of heme.

157. Explain the effects of lead toxicity on the heme biosynthetic pathway.

158. Explain lab tests used in the diagnosis of porphyrin disorders and clinically correlate the results. Describe possible interferences in each.

159. Describe the symptoms found in the different porphyrias and the abnormal test results in each.
Instructor: Abigail L. Blosser, B.S., MLS(ASCP)CM

Method of Instruction: Lecture, discussion, question and answer

Course Goal: To educate the student in urinalysis and body fluids so that they may function as an entry-level scientist in the clinical laboratory urinalysis and body fluid departments.

Textbooks:

Pre-Requisite Courses: 16 Semester hours of Chemistry plus one course in Biochemistry or Organic Chemistry
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/6/17</td>
<td>I. Anatomy and Physiology of the Kidney</td>
<td>Chapters 2-4</td>
</tr>
<tr>
<td></td>
<td>a. Kidney structure gross</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Kidney, microscopically</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Glomerulus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Nephron function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Tubular function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Sample – Specimen Collection – Preanalytical component of urinalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Preservation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. 24 hour specimen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Factors affecting collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Different types of specimens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Clean catch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Random</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Routine urinalysis – Analytical components of urinalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Appearance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Color: hemoglobinuria, porphyrins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Chemical testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Microscopic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Urine volume: normal vs. abnormal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Specific gravity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Reporting urine results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Assessment of lab services in urinalysis</td>
<td></td>
</tr>
<tr>
<td>9/8/17</td>
<td>II. Microscopic Urinary Structures and the Microscope</td>
<td>Chapters 6, & 8</td>
</tr>
<tr>
<td></td>
<td>a. Microscopic urine exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Use of microscope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Ocular lens + objectives and magnification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Urinalysis microscopic techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. bright field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. phase contrast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. polarizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. dark field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. fluorescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. interference contrast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Macroscopic screening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Commercial urinalysis systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. KOVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Urisystem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Quick-Prep System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. CenSlide 2000 Urinalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. R/S Workstation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vi. Microscopic specimen preparation</td>
<td></td>
</tr>
</tbody>
</table>
vii. Microscopic specimen volume
viii. Microscopic centrifugation
ix. Specimen microscopic exam and reporting and clinical correlations
x. Sediment Stains
 1. Sternheimer-Malbin
 2. Toluidine blue
 3. 2% acetic acid
 4. Lipid stains: Oil Red O and Sudan III
 5. Gram Stain
 6. Hansel Stain for Eosinophils
 7. Prussian Blue Stain
b. Casts
 i. Origin and formation (electron microscope)
 ii. Chemical
 iii. Appearance
 iv. Different types of casts: hyaline, epithelial cell, white blood cell and red blood cell casts, granular casts, waxy casts, fatty casts, pigmented casts, and broad casts
 v. Clinical correlation for all casts

9/11/17 III. Microscopic Urinary Structures
a. Erythrocytes: source, appearance, clinical significance
b. Leukocytes: source, differentiation, clinical significance
c. Glitter cells: description, significance, staining
d. Epithelial cells: origin, type
e. Oval fat bodies: appearance, formation, clinical significance
f. Crystals in acid urine: amorphous, urates, uric acid
g. Crystals in alkaline urine: amorphous phosphates, triple phosphate, ammonium biurates, uric acid
h. Crystals found in abnormal urine: cystine, tyrosine, leucine, sulfonamide
i. Miscellaneous findings (microscopic)
 i. Mucous threads, yeast cells, spermatozoa, air bubbles, bacteria, parasites, and starch granules

Chapter 6
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/13/17</td>
<td>IV. Urine Microscopics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Examination of various microscopic examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Clinical correlation for all findings</td>
<td></td>
</tr>
<tr>
<td>9/15/17</td>
<td>Exam 1 and hand in microscopic drawings</td>
<td></td>
</tr>
<tr>
<td>9/18/17</td>
<td>V. Characteristics of Urine</td>
<td>Chapter 4</td>
</tr>
<tr>
<td></td>
<td>a. Odor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Turbidity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Normals, physiology methods, indicators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Osmolality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Principles and method</td>
<td></td>
</tr>
<tr>
<td>9/18/17</td>
<td>VI. Chemical Examination of Urine Protein</td>
<td>Chapter 5</td>
</tr>
<tr>
<td></td>
<td>a. Normals (Qualitative and Quantitative)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Albumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Globulin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Tamm-Horsfall Protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Other proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Abnormal proteinuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Specimen – Pre-Analytic Component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Qualitative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Protein error of pH indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Protein precipitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Semi quantitative and quantitative methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Reporting results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Interpretation of results and clinical correlation</td>
<td></td>
</tr>
<tr>
<td>9/20/17</td>
<td>VII. Urinary Protein Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Reagent strip methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Precipitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Bence Jones Proteinuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Clinical significance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Electrophoresis</td>
<td></td>
</tr>
<tr>
<td>9/20/17</td>
<td>VIII. Reducing Substances</td>
<td>Chapter 5</td>
</tr>
<tr>
<td></td>
<td>a. Clinical significance and characteristics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Non-diabetic glucosuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Methods: glucose oxidase, copper reduction, Clinitest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Reaction interference for C</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>9/22/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>9/25/17</td>
<td>IX. Other/ Chemical Exam of Urine and Case Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Urea: Clinical significance and measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Creatinine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Creatinine clearance & Calculations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Ketones: Acetone, Aceto-acetic acid, Beta hydroxybutyric acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Hematuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Hemoglobinuria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myoglobinuria</td>
<td></td>
</tr>
<tr>
<td>9/27/17</td>
<td>X. Other Urine Characteristics</td>
<td>Chapter 9</td>
</tr>
<tr>
<td></td>
<td>a. Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Bilirubin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Urobilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Urobilinogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Nitrite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Leukocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Specific Gravity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XI. Melanin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Physiology, clinical significance, methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XII. Calcium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XIII. Chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XIV. Phenylketonuria PKU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XV. Salicylates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XVI. Hemosiderin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XVII. Urinary Calculi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XVIII. Clinical Evaluation of Renal Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XIX. Quality Control in Urinalysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XX. Aminoaciduria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXI. Homogentisic Aciduria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXII. Maple Syrup Urine Disease</td>
<td></td>
</tr>
</tbody>
</table>
Exam 3

10/2/17 XXIII. **Body Fluids**
10/4/17 a. Seminal fluid
 i. Specimen
 ii. Normal Values
 iii. Sperm morphology
 iv. Sperm viability
 v. Seminal fluid fructose
 vi. Anti-sperm antibodies
b. Synovial fluid
 i. Specimen and normal values
 ii. Tests and joint disorders
 iii. Crystal identification
c. Serous fluids
 i. Transudates and exudates
d. Pericardial fluid
e. Pleural fluid
f. Peritoneal fluid
g. Amniotic fluid
 i. Function and specimen
 ii. Testing
 1. Foam stability test
 2. Fluorescent polarization albumin
 3. Bilirubin scan
 4. Alpha fetoprotein
 5. L/S Ratio
 6. Amniostat-fetal lung maturity
h. Sweat
 i. Cystic fibrosis
 ii. Sweat test and cystic fibrosis (clinical correlation)
i. Feces
 i. Specimen and normal values
 ii. Color and appearance
 iii. Occult blood
 iv. Methylene blue
 v. APT test
j. Cerebrospinal Fluid (CSF)
 i. Specimen and function
 ii. Appearance and xanthochromia
 iii. Traumatic tap versus hemorrhage
 iv. Clinical significance
 v. Cells in CSF
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/9/17</td>
<td>Final Exam – Urinalysis and Body Fluids</td>
<td></td>
</tr>
</tbody>
</table>
SRMH Healthcare
MLS School

MT 404-Urinalysis and Body Fluids

Lecture Objectives

The student will at the completion of each of the units on urinalysis, reading assignments, practical application with a 70% accuracy on a written or practical exam unless otherwise stated. The student will:

Unit Topic I

1. Describe and recognize the anatomy and functions of the kidney to include the nephron, glomerulus, tubular portions and excretion system. Analyze an unknown fluid to determine if it is urine by examining the urea and creatinine.

2. Identify the normal composition of urine. Describe the different types of urine specimens and their use to include the following:
 - Random specimen
 - First morning specimen
 - Fasting specimen
 - 2-Hour postprandial specimen
 - Glucose tolerance urine specimens
 - Catheterized specimens
 - Midstream Clean-Catch specimen
 - Suprapubic aspiration
 - Prostatitis specimen
 - Pediatric specimen
 - Drug specimen collection
 - 24 Hour Urine Specimen

3. Identify and utilize each urine preservative with the appropriate test.

4. Perform, interpret and clinically correlate the tests included in a routine urinalysis. List the exogenous and endogenous causes of hemoglobinuria.
5. Interpret the various colors of urine giving the possible clinical significance and test utilized as a follow-up to the respective color.

6. Identify and interpret the clarity of urine to include the following:
 - Clear
 - Hazy
 - Cloudy
 - Turbid
 - Milky

 Explain causes of turbidity in acid and/or alkaline urine. Identify substances that may dissolve turbidity in a urine specimen.

7. Perform the test of specific gravity with the urinometer, refractometer, dipstick, and automated methods. Explain the methodology, normal and abnormal values, and interpret possible disease states associated with a high, low or fixed specific gravity.

8. Define and clinically correlate to pathological conditions the following terms: polyuria, oliguria, anuria, antidiuretic hormone deficiency, renal threshold of glucose, and isosthenuria. Explain the normal urine volume of a 24 hr specimen and a random specimen.

9. Discuss the advantages, disadvantages and perform corrections (temperature, presence of protein and glucose) for each type of measurements for specific gravity, if necessary.

10. Evaluate quality control data and identify discrepancies when controls do not meet specifications. Devise a plan to correct these problems.

Unit Topic II

11. Use the binocular microscope correctly and explain the ocular lens and objectives working together to produce the total magnification. Calculate the various magnifications by using the ocular lens and different objectives.

12. Adjust the microscope to better visualize a urine microscopic sediment. Explain the different urine microscopic techniques that may be used to include bright field, phase contrast, polarizing, dark field, fluorescence, and interference contrast. Discuss the microscopic stains to include Sternheimer-Malbin, toluidine blue, 2% acetic acid, lipid stains, Gram stain, Hansel stain, and Prussian Blue stain.

13. Identify visually or from a written description the following casts, and clinically correlate these casts with possible pathological conditions. Discuss the composition of each cast and relate this to the appearance with a polarized light, i.e. a maltese cross appearance. Explain how these casts are formed from use of an electron microscope.
Hyaline casts
Epithelial cell casts
Red cell casts
White cell casts
Granular casts, both coarse and fine
Waxy casts
Fatty casts
Pigmented casts
Broad casts
Bilirubin in casts

14. Describe formation sites for the above list of casts.

Unit Topic III

15. Identify from appearance or written description the following microscopic structures which may be seen in a urine sample. Explain the use of stains to aid in the identification of some of these structures (Sudan III, Sternheimer Malbin, etc.)

- Crystals in alkaline urine:
 - Amorphous carbonates
 - Triple phosphate
 - Calcium carbonate
 - etc.

 Crystals in acid urine:
 - Amorphous urates
 - Uric acid
 - Calcium oxalate

- Microscopic structures:
 - erythrocytes, leukocytes, glitter cells, epithelial cells, oval fat bodies
 - Crystals found in abnormal urine:
 - Cystine, tyrosine, leucine, sulfonamide
 - Miscellaneous findings:
 - Mucus threads, yeast cells, bacteria, etc.

16. Identify normal and abnormal test findings for all structures in #15 and clinically correlate the test findings with possible pathology. Identify the need for future testing and suggest useful additional tests.

17. Verify test results for the above testing. Identify urine microscopic structures that may be confused with red blood cells such as yeast, oil droplets, Ca oxalate and air bubbles.
18. Make judgments concerning the need for future testing which may be necessary to confirm a diagnosis or rule out a specific disease.

19. Analyze case studies and correlate results to health or disease. Name the most likely disease. (For example: clinically correlate the need for a urine eosinophil count.)

Unit Topic IV

20. Describe and perform testing with the reagent strips used for chemical analysis of urine to include pH, protein, etc.

21. Explain the storage and appropriate quality control checks for these reagent strips.

22. Discuss automation in urinalysis such as Ursys 1100 system used at RMH and the Sysmex UF-1000 urine cell analyzer.

23. Discuss urine odor in health and in various diseases.

24. List and interpret urine pH measurements for the normal and abnormal patient. Correlate the urine pH with stone formation. Perform urine pH measurements and note the appropriate specimen to be used.

25. Discuss and perform urine osmolality and clinically correlate the results to the appropriate disease.

26. Verify all testing results listed in objective #20-25.

27. Analyze and interpret quality assurance programs for urine pH, odor, osmolality, creatinine clearance and GFR.

28. Identify when controls do not meet quality assurance specifications, analyze the situation, and devise a plan to correct the quality control problem.

Unit Topics V and VI

29. Discuss the test principle, reagents, appropriate specimen, methodology, sources of error, normal values for the following urinary protein tests. Clinically correlate test results with the appropriate disease or condition to include orthostatic proteinuria and functional proteinuria. Recognize false positives and negatives.

- Bence Jones Protein
- Protein Error of Indicators
- Albumin
- Microalbuminuria
- Immunodip Reagent Strip for Microalbuminuria
- Albumin-Creatinine Ratio Strips for Microalbumin
- Sulfosalicylic Acid/turbidity for protein

30. Interpret and apply quality assurance measures utilized in the testing in #29.

Unit Topic VII

31. Describe the metabolism, methodologies, clinical significance and normal values for glucose in the urine as evidenced by the student correctly responding to 9 out of 10 case studies or unknowns given on a written or practical exam.

32. Clinically correlate testing results with diabetes mellitus or correct condition/disease.

33. Compare and contrast various methodologies for measuring reducing substances in the urine to include sources of error, false positives, false negatives and interfering substances. Analyze data and select the best method.

34. Verify testing results.

35. Summarize the comparison between glucose oxidase and clinitest results and interpret the results. Clinically correlate and apply the results. Identify when and why results do not correlate.

Unit Topic VIII

36. Explain the principles of tests, perform the tests, describe the metabolism, clinical significance, methodology and normal values for the following when found in the urine: urea, ammonia, uric acid, creatinine, creatine, amino acids, hemoglobin and myoglobin.

37. Solve case studies and identify the correct diagnosis when given testing results from #36.

38. Discuss the specimen requirements for all testing of substances listing in #36.

39. Verify testing results and make judgments concerning the need for future testing.

40. Interpret and apply quality assurance data.

Unit Topic IX

41. Describe the metabolism, methodology, clinical significance and normal values for urine containing the following:

 - Bile, bilirubin, urobinogen, urobilin, porphobilinogen, uroporphyrin, coproporphyrin ketone bodies.
42. Compare and contrast methodologies to include false positives, false negatives, and sources of error for the following list of methods:

 Diazo, foam test, Ehrlich’s Test, Watson-Schwartz Test, and any other tests discussed in class.

43. Clinically correlate test results with the pathological condition.

44. Evaluate and apply quality assurance data such as the checking of reagent strips for reactivity and ensuring the proper care and storing of reagent strips etc. Make required changes as suggested by the QC data.

45. Describe the various renal function tests and clinically correlate these test results with the appropriate disease.

46. Discuss and run the urinalysis instruments—Atlas and Yellow Iris.

47. Explain the various renal diseases giving the etiology and prognosis. Correlate testing results with these diseases.

48. Describe the special urinalysis screening tests such as phenylketonuria etc

49. Investigate new urinalysis procedures and research which method may be the best for your laboratory. Select the best method.

Body Fluids

The student will at the completion of the lectures, reading assignments and practical experience on body fluids: (The objective will be met when the student obtains a score of 70% or higher on a written or practical exam.) Objectives for cell counts will be found in hematology. Objectives for amniotic fluid will be found in chemistry under the lipids lecture. (additional objectives will be found here)

CSF

50. Describe the formation and physiology of cerebrospinal (CSF).

51. Explain the procedure used to collect CSF, the appearance (normal vs xanthochromia), and evidence of traumatic collection. Discuss the quality control measures utilized in the collection of CSF and other body fluids. Describe proper handling of CSF specimens for microbiology, chemistry, and serology.

52. Interpret the CSF appearance and apply it to the appropriate clinical significance.
53. Discuss the CSF protein, glucose, lactate, glutamine, lactic dehydrogenase and creatine kinase CK BB isoenzyme methodology and correlate results with the appropriate pathological condition. Identify test values that correlate with a CSF versus a serum specimen for glucose, protein, LD, CK.

54. Clinically correlate CSF and serum values for all the following: total protein, prealbumin, albumin, ceruloplasmin, transferrin, IgG, and IgA. Describe the respective concentrations for all substances listed in the CSF and serum.

55. Summarize the major CSF laboratory results utilized in making the differential diagnosis of meningitis.

56. Describe the use of the gram stain, immunologic procedures and serologic procedures on CSF. Clinically correlate results with disease or health.

57. Analyze quality control results for CSF testing, identify QC results that are outside acceptable limits, devise a method to correct the problem causing results to be unacceptable, and correct the problem.

58. Make judgments concerning the need for future testing when evaluating test results; for example, when results do not correlate, QC results to not meet established criteria, or additional testing is needed to establish a diagnosis.

Miscellaneous Body Fluids

Seminal Fluid

59. Describe the collection, medical reasons for collection, normal and abnormal composition of seminal fluid.

60. Describe the normal values for volume, viscosity, pH, sperm count, motility, quality and morphology for semen analysis. Clinically correlate these results to pathology or health.

61. Verify testing results and make judgments concerning the need for additional testing or the need to change an existing procedure.

62. Analyze testing results, identify any problems and correct these problems (such as false positives, incorrectly collected specimen, false negatives).

Synovial Fluid

63. Describe the location and composition of synovial fluid (“joint fluid”).
64. Describe arthrocentesis.

65. Explain the classification and pathological significance of joint disorders.

66. Clinically correlate the laboratory findings to the appropriate group classification.

67. Describe, interpret and apply the identification of synovial fluid crystals to the appropriate pathological condition such as crystal-induced arthritis.

68. Describe, interpret and apply clinically the compensated polarized light identification of calcium pyrophosphate and monosodium urate.

69. Explain and clinically correlate testing in the chemistry, microbiology and serology laboratory on synovial fluid to health or disease.

70. Evaluate quality control data and make judgments for repeat testing or the need for additional new testing to confirm a diagnosis or rule out a disease.

71. Explain and apply clinically the laboratory differentiation of transudates and exudates.

Pleural, Pericardial and Peritoneal Fluid

72. Describe the normal and abnormal formation, appearance, hematology, chemistry, and serology tests for pleural, pericardial fluid, and peritoneal fluid.

73. Clinically correlate the test results for #72 to health or disease.

74. Verify test results for #72.

75. Evaluate QC data and make judgments regarding the need for future testing or repeat testing.

Fecal Analysis

76. Describe the specimen collection and physiology of feces.

77. Perform and clinically correlate the following tests on feces:

 Color and consistency, white blood cells, qualitative fecal fats, muscle fibers, occult blood, quantitative fecal fats, APT Test, Trypsin, methylene blue stain, and carbohydrates.

78. Analyze testing results, identify any discrepancies with results.
79. Verify test results.

80. Make judgments concerning the need for new testing or repeat testing by evaluating QC data.

Transudates and Exudates

81. Define transude and exudates, and explain how each is formed.

82. Identify and interpret test results to include the following when evaluating a fluid as a transude or exudate:
 - Appearance
 - WBC count
 - Serum protein ratio
 - Serum LD ratio
 - Spontaneous clotting
 - Cholesterol
 - Bilirubin ratio

Amniotic Fluid

83. Describe the process of obtaining amniotic fluid through amniocentesis.

84. Define the function of amniotic fluid.

85. Perform and interpret the L/S Ratio to include clinical correlation, adequacy of specimen, maturity of fetus in a diabetic mother versus a non-diabetic mother. Write the phospholipids designated by the L and S in L/S Ratio.

86. Identify false elevations in the L/S Ratio from substances such as blood or meconium.

87. Describe and clinically correlate the following amniotic fluid tests:
 - Foam stability
 - Fluorescent polarization albumin
 - Bilirubin scan
 - Alpha fetoprotein
 - Amniostat-fetal lung maturity
Sweat

88. Describe and clinically correlate pilocarpine ionophoresis induction of sweat in the sweat test. Clinically correlate values for chloride and sodium in the sweat and cystic fibrosis.
Instructor: Cyndee S. Lowe, B.S., MLS (ASCP)™

Method of Instruction: Lecture, discussion, case studies, prepared slides, laboratory exercises, question and answer

Course Goal: The goal of this course is to educate students in clinically significant bacteria and viruses, as well as microscopy and molecular biology, and to prepare the students to be able to function as an entry-level technologist/scientist in the Bacteriology and Virology departments.

Textbook:

Other References:
MICROBIOLOGY LECTURE SCHEDULE - BACTERIOLOGY

DATE:

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
</table>
| 6/6/17 & 6/7/17 | I. Introduction
 a. Purpose of Clinical Microbiology | Chapter 1 |
| 6/12/17 | II. Bacterial Taxonomy, Genetics, Metabolism, and Structure
 a. Taxonomy
 b. Structure of bacterial cells
 c. Cell growth and metabolism
 d. Bacterial genetics | Chapter 2 |
| 6/14/17 | III. Host-Parasite Interactions
 a. Definitions
 b. Host factors
 c. Microbial factors
 d. Outcomes of infection | Chapter 4 |
| 6/16/17 | IV. Laboratory Safety and Control of Microorganisms
 a. Exposure control plan
 i. Employees
 ii. Waste disposal
 iii. Standard precautions
 iv. Chemical safety
 v. Engineering controls
 vi. Biosafety cabinets
 vii. Routes of exposure
 b. CDC biosafety levels
 c. Sterilization and disinfection | Chapter 6 |
| 6/19/17 | V. Specimen Collection and Processing
 a. Pre-analytic phase
 i. Specimen collection
 ii. Specimen preservation
 iii. Specimen storage
 b. Analytic phase
 i. Specimen processing
 ii. Environmental requirements
 iii. Direct microscopic examination
 iv. Specimen work-up
 c. Post-analytic phase
 i. Communication with clinicians
 ii. Communication with epidemiologists | Chapter 7 |
| 6/19/17 | VI. Microscopy and Staining
 a. Goals
 b. Phase-contrast
 c. Dark field
 d. Fluorescent | Chapter 7 |
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/21/17 & 6/23/17</td>
<td>VII. Bacterial Identification</td>
<td></td>
</tr>
<tr>
<td>6/26/17</td>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>6/28/17 & 6/30/17</td>
<td>VIII. Antimicrobial Agents and Susceptibility Testing</td>
<td>Chapter 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 13</td>
</tr>
<tr>
<td>7/3/17</td>
<td>IX. Staphylococcus and Microoccus</td>
<td>Chapter 14</td>
</tr>
<tr>
<td></td>
<td>a. Staphylococcus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Coagulase negative Staph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Microoccus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Coagulase negative Staph</td>
<td></td>
</tr>
<tr>
<td>7/5/17 & 7/6/17</td>
<td>Disk Diffusion Lab</td>
<td></td>
</tr>
<tr>
<td>7/7/17</td>
<td>X. Streptococcus and Enterococcus</td>
<td>Chapter 15</td>
</tr>
<tr>
<td></td>
<td>a. Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Beta-hemolytic streptococci (Groups A, B, C, F, G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Streptococcus pneumoniae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Viridans streptococci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Enterococcus</td>
<td></td>
</tr>
<tr>
<td>7/10/17</td>
<td>XI. Gram Positive Bacilli</td>
<td>Chapter 16</td>
</tr>
<tr>
<td></td>
<td>a. Bacillus</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>7/12/17</td>
<td>Gram Positive Lab</td>
<td></td>
</tr>
<tr>
<td>7/14/17</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>7/17/17</td>
<td>XII. Biochemical Identification of Gram Negative Rods</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>7/19/17 & 7/21/17, & 7/24/17</td>
<td>XIII. Enterobacteriaceae</td>
<td>Chapter 19</td>
</tr>
<tr>
<td></td>
<td>a. General characteristics and tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Escherichia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Shigella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Salmonella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Yersinia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Klebsiella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Enterobacter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Serratia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Hafnia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Pantoea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Proteus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l. Providencia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m. Morganella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n. Citrobacter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o. Edwardsiella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. Other species</td>
<td></td>
</tr>
<tr>
<td>7/26/17 – 7/28/17</td>
<td>Enterobacteriaceae Lab</td>
<td></td>
</tr>
<tr>
<td>7/31/17</td>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>8/2/17</td>
<td>XIV. Oxidase-Postive Gram-Negative Fermenting Bacteria</td>
<td>Chapter 20</td>
</tr>
<tr>
<td></td>
<td>a. Vibrio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Aeromonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Plesiomonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Chromobacterium</td>
<td></td>
</tr>
<tr>
<td>8/4/17</td>
<td>XV. Nonfermentative Gram-Negative Bacteria</td>
<td>Chapter 21</td>
</tr>
<tr>
<td></td>
<td>a. Acinetobacter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Stenotrophomonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Pseudomonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Burkholderia</td>
<td></td>
</tr>
</tbody>
</table>
MICROBIOLOGY LECTURE SCHEDULE - BACTERIOLOGY

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. 8/7/17</td>
<td>HACEK Biological Organisms</td>
<td>Chapter 18</td>
</tr>
<tr>
<td>e. Shewanella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Ralstonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Rhizobium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Achromobacter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Alcaligenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Elizabethkingia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Comamonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Sphingomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Brevundimonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/9/17</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>8/11/17</td>
<td>Exam 4</td>
<td></td>
</tr>
<tr>
<td>8/14/17 & 8/16/17</td>
<td>Miscellaneous Gram-Negative Bacilli and Coccobacilli</td>
<td>Chapters 18, 20, and 21</td>
</tr>
<tr>
<td>a. Haemophilus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Actinobacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Cardiobacterium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Eikenella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Kingella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18/17, 8/21/17, & 8/23/17</td>
<td>Anaerobic Bacteria</td>
<td>Chapter 22</td>
</tr>
<tr>
<td>a. Definition of anaerobe types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Isolation and collection of anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Organism isolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Clostridium (spore-forming rods)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Anaerobic gram-positive (non-spore forming) bacilli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Propionibacterium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Eubacterium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Actinomyces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TOPIC</td>
<td>READING ASSIGNMENT</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>8/25/17</td>
<td></td>
<td>Exam 5</td>
</tr>
<tr>
<td>8/28/17</td>
<td>XIX. Gram-Negative Cocci</td>
<td>Chapter 17</td>
</tr>
<tr>
<td></td>
<td>a. Neisseria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Moraxella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Nonpathogenic forms</td>
<td></td>
</tr>
<tr>
<td>8/30/17</td>
<td>XX. Spirochetes</td>
<td>Chapter 23</td>
</tr>
<tr>
<td></td>
<td>a. Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Treponema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Borrelia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Leptospira</td>
<td></td>
</tr>
<tr>
<td>9/1/17</td>
<td>XXI. Chlamydia, Mycoplasma, and Ureaplasma</td>
<td>Chapter 24</td>
</tr>
<tr>
<td></td>
<td>a. Overview</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Reproduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Chlamydia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Mycoplasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Ureaplasma</td>
<td></td>
</tr>
<tr>
<td>9/6/17</td>
<td>XXII. Rickettsiae</td>
<td>Chapter 24</td>
</tr>
<tr>
<td></td>
<td>a. Rickettsia rickettsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Rickettsia akari</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Rickettsia conorii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Rickettsia prowazekii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Rickettsia typhi</td>
<td></td>
</tr>
</tbody>
</table>

- iv. *Lactobacillus*
- v. *Bifidobacterium*
- vi. *Mobiluncus*
- f. Anaerobic gram-negative (non-spore forming) bacilli
 - i. *Bacteroides*
 - ii. *Bilophila*
 - iii. *Prevotella*
 - iv. *Porphyromonas*
 - v. *Fusobacterium*
- g. Anaerobic gram-positive cocci
 - i. *Peptostreptococcus*
 - ii. *Peptoniphilus*
 - iii. *Anaerobius*
 - iv. *Peptococcus*
- h. Anaerobic gram-negative cocci
 - i. *Veillonella*
- i. Susceptibility testing
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/8/17</td>
<td>Exam 6</td>
<td></td>
</tr>
<tr>
<td>9/11/17 & 9/13/17</td>
<td>XXIII. Mycobacteria</td>
<td>Chapter 45</td>
</tr>
<tr>
<td></td>
<td>a. Collection and processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Staining acid-fast bacilli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Growth requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Colony morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Rate of growth and relation to temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Pigmentation and photo reactivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Definitive identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Mycobacterium tuberculosis complex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Photochromogens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Scotochromogens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Non-chromogenic, slow growing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Rapid growing, Mycobacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>j. Antimicrobial treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>k. Mycobacterium leprae</td>
<td></td>
</tr>
<tr>
<td>9/15/17</td>
<td>XXIV. Actinomycetes</td>
<td>Chapter 21</td>
</tr>
<tr>
<td></td>
<td>a. Nocardia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Streptomycyes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Actinomadura</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Gordonia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Tsukamurella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Rhodococcus</td>
<td></td>
</tr>
<tr>
<td>9/18/17</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>9/20/17</td>
<td>Exam 7</td>
<td></td>
</tr>
<tr>
<td>9/22/17, 9/25/17, 9/27/17 & 9/29/17</td>
<td>XXV. Infections by Body Site</td>
<td>Chapter 32, 33, 34, 35, 36, 37</td>
</tr>
<tr>
<td></td>
<td>a. Respiratory infections</td>
<td>Chapter 33</td>
</tr>
<tr>
<td></td>
<td>b. Skin and soft tissue infections</td>
<td>Chapter 34</td>
</tr>
<tr>
<td></td>
<td>c. Gastrointestinal infections and food poisoning</td>
<td>Chapter 35</td>
</tr>
<tr>
<td></td>
<td>d. Central nervous system infections</td>
<td>Chapter 36</td>
</tr>
<tr>
<td></td>
<td>e. Bacteremia and sepsis</td>
<td>Chapter 37</td>
</tr>
</tbody>
</table>
MICROBIOLOGY LECTURE SCHEDULE - BACTERIOLOGY

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f. Urinary tract infections</td>
<td>Chapter 38</td>
</tr>
<tr>
<td></td>
<td>g. Genital infections and sexually transmitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Ocular infections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct smear lab will follow each class</td>
<td></td>
</tr>
<tr>
<td>10/2/17</td>
<td>XXVI. Quality Control in Microbiology</td>
<td>Chapter 3</td>
</tr>
<tr>
<td></td>
<td>a. Definitions</td>
<td>Chapter 5</td>
</tr>
<tr>
<td></td>
<td>b. Quality control in the microbiology laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXVII. Infection Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Nosocomial infections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Infection Control Practitioner and Committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Role of the microbiology laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXVIII. Bioterror</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Bio crime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Laws and regulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Laboratory response network</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Sentinel laboratory responsibilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Bio threat agents</td>
<td></td>
</tr>
<tr>
<td>10/4/17</td>
<td>Exam 8</td>
<td></td>
</tr>
</tbody>
</table>
10/6/17
I. General Characteristics of Viruses
 a. Viral structure
 b. Classification of viruses
 i. DNA viruses
 ii. RNA viruses
 c. Viral replication
 d. Laboratory diagnosis of viral infections
 i. Specimen collection and transport
 ii. Methods of diagnosis
 1. Direct detection
 2. Nucleic acid based detection
 3. Viral isolation
 4. Serologic assays

10/9/17, 10/11/17, & 10/13/17
II. Viruses the Cause Human Diseases
 a. Double stranded DNA viruses
 i. Adenoviridae
 ii. Herpesviridae
 iii. Papillomaviridae
 iv. Poxviridae
 b. Single stranded DNA viruses
 i. Parvoviridae
 c. Double stranded RNA viruses
 i. Reoviridae
 d. Single stranded RNA viruses
 i. Arenaviridae
 ii. Bunyaviridae
 iii. Calciviridae
 iv. Coronaviridae
 v. Filoviridae
 vi. Flaviviridae
 vii. Orthomyxoviridae
 viii. Paramyxoviridae
 ix. Picornaviridae
 x. Retroviridae
 xi. Rhabdoviridae
 xii. Togaviridae
 e. Hepatitis viruses
 i. Hepatitis A virus
 ii. Hepatitis B virus
 iii. Hepatitis D virus
 iv. Hepatitis C virus
 v. Other Hepatitis viruses

III. Prions
IV. Antiviral Therapy
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>READING ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/16/17</td>
<td>Exam 9</td>
<td></td>
</tr>
<tr>
<td>10/18/17</td>
<td>Case Studies</td>
<td></td>
</tr>
<tr>
<td>10/20/17</td>
<td>Review Session 1</td>
<td></td>
</tr>
<tr>
<td>10/23/17</td>
<td>Review Session 2</td>
<td></td>
</tr>
<tr>
<td>10/25/17</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>
School of Medical Laboratory Science

BACTERIOLOGY/MICROBIOLOGY OBJECTIVES

The student will, at the completion of the lectures, reading assignments, and verbal instructions on bacteriology and virology by attaining a minimum of 70% on a written or oral exam:

CLASSIFICATION

1. Describe microbial classification and accurately apply the rules of scientific nomenclature for bacterial names
2. Describe how the bacterial genome is organized including the bacterial chromosome, plasmids and transposable elements
3. Discuss the mechanisms by which bacteria physically exchange DNA including transformation, transduction and conjugation
4. Describe the cell walls of both gram positive and gram-negative bacteria, including the gram stain with each type, and give examples of each type

HOST-PARASITE INTERACTIONS

5. Describe how normal flora, physical and chemical barriers protect the host from infectious agents
6. Differentiate the characteristics of the humoral from the cell-mediated immune response
7. Differentiate the mechanisms of infections caused by true pathogens from those caused by opportunistic pathogens
8. Discuss the conditions that must be present or events that must occur for a microorganism to cause disease
9. Define
 - Reservoir
 - Vector
 - Fomite
 - Nosocomial infection
 - Zoonoses

June 2017 Micro Objectives.doc
SAFETY

10. Explain the methods of sterilization and disinfection

11. Explain and apply risk management and risk assessment in the microbiology laboratory

12. Differentiate the functions and purposes of a disinfectant and an antiseptic

13. Give the mechanism of action for each type of chemical agent commonly used in antiseptics and disinfectants

14. Differentiate the design, function and use of three levels of Biological Safety Cabinets

15. Define
 • Bacteriostatic
 • Disinfection
 • Sterilization
 • Bactericidal

MICROSCOPY AND STAINING

16. Describe and apply principles of operation for the compound microscope, phase contrast microscope, fluorescent microscope and electron microscope. Solve problems that may arise during the utilization of the various microscopes

17. Describe and perform different types of stains; including differential stains utilized in the microbiology laboratory

18. Analyze and solve problems that may arise during staining procedures

19. Given a list of stains commonly used in the clinical laboratory, select the stain for determining whether a microbe is a bacterium, fungus, mycobacterium or viral inclusion

20. Given a gram stain smear of infected material, describe the local material, contaminating material, purulence and associated microorganisms

21. Explain the application of quality control and quality improvement activities to the results of the direct microscopic examination and culture

22. Explain the use of stains routinely used in the microbiology laboratory

IMMUNOSEROLOGY

23. Describe the principles and applications of the serologic methods discussed

24. Discuss the purpose for immunologic testing and clinically correlate the results with the appropriate pathological condition. Solve any problems that may arise with testing

25. Describe and differentiate the immunoassay methods described in class

26. Verify the testing results and quality control for all reactions
27. Interpret case studies and make judgments concerning the reactions

MOLECULAR TECHNIQUES and FUNDAMENTALS OF MOLECULAR BIOLOGY

28. Discuss and explain nucleic acid hybridization and the fundamentals of molecular biology. Describe the principles for molecular antigen detection methods used in the microbiology laboratory. Explain recombinant DNA technology and gene cloning

29. Describe the colonial applications of direct antigen detection methods

30. Describe the clinical applications of amplification systems and probe technology in the microbiology laboratory. Explain and interpret the following molecular biology techniques: Southern blot and Northern blot

ANTIMICROBIAL AGENTS AND SUSCEPTIBILITY TESTING

31. Correlate the basic structure of microorganisms and the specific functions of individual components with the actions of antimicrobial agents

32. List the major sites of action for major classifications of antimicrobial agents

33. List examples of antimicrobial agents that affect structural integrity; describe how beta lactam agents result in antibacterial activity

34. List the antimicrobials whose primary mechanism is interference with metabolic functions, including DNA syntheses, RNA syntheses and folic acid metabolism

35. Describe the general considerations that are involved in selecting an appropriate antimicrobial agent to treat an infection

36. Evaluate the responsibility of the laboratory staff in antimicrobial susceptibility testing

37. Compare the clinical effectiveness and mode of action of the more common antimicrobial agents

38. Describe the mechanism of action of the more common antimicrobial agents

39. Differentiate intrinsic and non-intrinsic bacterial resistance to antimicrobial therapy

40. List and describe five biochemical mechanisms of bacterial resistance

41. Discuss the principle of disk agar diffusion tests including the determination of susceptibility

42. Assess the importance of factors such as inoculum density, composition and depth of agar, temperature of incubation and potency of disks in determining inhibition zone sizes

43. Describe the agar dilution and the broth dilution susceptibility tests

44. Design a quality control model as to when you would perform quality control for antimicrobial susceptibility procedures

45. Explain the use of MIC’s and the purpose for routine susceptibility testing
46. Compare the advantages and disadvantages of automated systems for antimicrobial susceptibility testing

47. Discuss the quality control aspects of antimicrobial susceptibility testing

AUTOMATION AND INSTRUMENTATION

48. Describe and utilize commercial biochemical identification systems such as API 20E, VITEK, Microscan System etc

49. Identify and solve problems with these commercial systems

50. Discuss the principle and purpose of
 • rapid conventional tests
 • miniaturized microbiologic methods
 • instrumentation commonly used in microbiology laboratories
 • automated detection systems, including BacTalert

SPECIMEN COLLECTION AND PROCESSING

51. Define the atmospheric requirements of obligate aerobes, microaerophiles, facultative anaerobes, obligate anaerobes and capnophilic bacteria

52. Demonstrate knowledge of mechanisms for maintaining organism viability relating to preservation, storage and transport of specimens

53. Given a specific specimen source, be able to identify the preferred specimen collection method, transportation of the specimen, and the procedures for culturing the specimen in the lab

54. Explain the time and storage requirements for specimens when cultures cannot be processed immediately

55. Discuss and perform collection of specimens, and solve problems that may arise during this collection

56. Assess the appropriate times for the collection and incubation times of blood cultures

57. Explain and perform the processing and inoculation procedure for CSF

58. Describe the methods for culturing urine and relate the most common causes of UTI’s

MICROBIOLOGIC MEDIA

59. Explain the purposes of microbiology media, and discuss the conditions provided by Microbiology media that enhance bacterial growth

60. List the nutritional and environmental requirements for bacterial growth, and define the categories of media used for culturing bacteria

61. Discuss and apply the purpose, principle, interpretation, ingredients and preparation for each media discussed

June 2017 Micro Objectives.doc
62. Identify each phase of the bacterial growth cycle

63. Differentiate the three basic types of media and provide examples of each type

64. Recall chemicals, dyes, or antibiotics present in the media, or special procedures required for the media

65. Describe how growth on blood, chocolate and MacConkey agars is used in the preliminary identification of organisms

66. Describe how gross colony characteristics are used in the presumptive identification of microorganism

67. Given a specific organism, describe its colonial morphology on routine agar

68. Given a specific bacterium, select the routine primary culture media for that organism and any media used for selection, differentiation or identification

IDENTIFICATION OF BACTERIA

69. Describe the principle of the test and state the quality control organisms that are used for each of the biochemical tests discussed in class.

70. Assess quality control results for a given biochemical test and analyze unexpected results

GENERAL OBJECTIVES FOR ALL ORGANISMS

71. Describe the general characteristics, micro and macroscopically, including gram stain and biochemical reactions, etiology, and appearance on selective and non selective media

72. Discuss the virulence factors, if applicable, and correlate clinically organism to disease

73. Give the signs and symptoms of clinical infections and explain how infection is established

74. State and discuss the principle and purpose of differential tests, including routine and special media and serological tests, used for presumptive and definitive identification

75. Select proper atmospheric, nutritional requirements and environmental conditions for culture of each bacterium

76. Differentiate clinically significant species from non-significant species and methods to control the spread of the organism, if applicable

77. Discuss the proper methods of specimen collection and handling, including common body sites and the acceptability of specimens. Explain when additional testing is needed to identify an organism and select the appropriate test to make that identification

78. State the appropriate antimicrobial agent and susceptibility testing for this organism

79. Design a flow chart for identification of this genus (genera) and alternative methods of testing
80. Recognize discrepancies in testing or quality control, and develop a course of action to resolve these problems.

81. Describe identification of these organisms by molecular or other methods

82. Determine the validity of all tests, and solve case studies by stating the correct diagnosis with the patient’s physical characteristics and the lab results are given

STAPHYLOCOCCI

83. Describe the cause for the beta hemolysis around colonies of *S. aureus* on sheep blood agar

84. Correlate coagulase test results to the identification of staphylococci

85. Explain the etiology behind this statement, “*S. epidermidis* is a major cause of infection associated with indwelling devices”

86. Discuss methods/tests to differentiate micrococci and staphylococci and evaluate the results of lysostaphin and microdase testing

STREPTOCOCCI

87. Explain the use of a bacitracin disc in identifying beta hemolytic strep

88. Correlate Lancefield Groupings with specific *Streptococcus* species. Explain the use of optochin susceptibility and bile solubility in differentiating organisms.

89. Explain the significance of the “viridans streptococci”

90. Name the nutritionally deficient gram positive organisms. Recognize when they are present in a blood culture and describe how to isolate them on solid medium.

GRAM POSITIVE BACILLI

BACILLUS

91. Describe the organism in this category that is utilized in the testing of sterilizers

92. Solve case studies that describe the transmission of *B. anthracis* to include the chief animal reservoirs

93. Demonstrate the correct safety precautions when working with cultures of *B. anthracis*

94. Identify the various forms and discuss ways to prevent anthrax

95. Identify *B. anthracis* from laboratory testing, solve any problems that may arise and clinically correlate the results

CORYNEBACTERIUM

96. Evaluate the use and importance of the Babes-Ernst stain

ERYSIPELOTHRIX

June 2017 Micro Objectives.doc
97. Differentiate *Erysipelothrix rhusiopathiae* from other non-spore forming gram-positive bacilli

LISTERIA

98. Interpret two methods of motility testing for Listeria

99. Compare and contrast characteristics to differentiate Listeria from Streptococcus

ENTEROBACTERIACEAE

100. Describe the primary habitats of the Enterobacteriaceae and relate this to the transmission of disease

101. Outline measures to assure personal safety when working with enteric pathogens

102. Describe the time and/or stage, and the number of specimens collected for stool cultures

103. List the most common members of Enterobacteriaceae that cause urinary tract infections

104. Name and describe the surface antigens associated with the Enterobacteriaceae

105. Given the reactions of biochemical testing and colonial appearance, place an unknown organism in its proper tribe or genus

ESCHERICHIA

106. List the five principle types of enteropathogenic *E. coli* and indicate the type seen and cultured for in the United States

SHIGELLA

107. Name the four species indicating the most common and the most severe in terms of clinical infection

OTHER GRAM NEGATIVE BACTERIA

PUEDOMONAS

108. Name the different pigments and their colors produced by *Pseudomonas aeruginosa*.

109. Name the extra cellular enzymes produced by *P. aeruginosa* that help promote and contribute to virulence and tissue destruction

110. Name the organism commonly isolated from cystic fibrosis patients

111. List the three *Pseudomonas* species that may produce fluorescent pigments

VIBRIO

112. Outline measures to assure personal safety when working with Vibrionaceae discussed in lecture
113. Discuss methods to differentiate the strains of *Vibrio* which cause cholera from other diarrhea causing agents

AEROMONAS & PLESIOMONAS

HAEMOPHILUS & HACEK ORGANISMS

114. Solve case studies and written problems where characteristics of *Haemophilus* are given and the correct treatment and pathological condition must be selected

115. Evaluate hemolysis and X and V factor reactions in the identification of *Haemophilus* species

116. Based on biochemical reactions, distinguish between *Aggregatibacter aphrophilus*, *Aggregatibacter actinomycetemcomitans*, *Cardiobacterium hominis*, *Eikenella corrodens* and *Kingella* spp. Correlate these results with the clinical picture

NEISSERIA

117. Describe the primary sites of colonization of *Neisseria meningitidis* in asymptomatic carriers and relate to the transmission of the organism

118. Assess the importance of the appearance of gram-negative diplococci in the gram stain of the urethral discharge of a male patient and compare that to the appearance of gram-negative diplococci from the smear of the anorectal area or female endocervix

119. Make judgments after assessing testing results and other data as to the need for future testing or evaluation of the patient

120. Discuss some advantages and drawbacks of non-culture detection methods for *Neisseria gonorrhoeae*

CAMPYLOBACTER, HELICOBACTER & OTHERS

121. Describe the clinical picture associated with gastrointestinal infection by *Campylobacter*

122. Differentiate *Campylobacter jejuni* from *Campylobacter coli* using biochemical test results

123. Describe specimens and non-culture methods used to identify *Helicobacter pylori*

LEGIONELLA

124. Solve case studies that give patient physical characteristics and laboratory testing results by giving the correct diagnosis for *Legionella*

GRAM NEGATIVE COCCOBACILLI

PASTEURELLA

125. Name the species of *Pasteurella* that cause human disease

126. Describe the morphology and characteristics of *Pasteurella multocida*

127. Identify the odor emitted from a *P. multocida* culture
128. Describe *P. multocida* colony types

129. Discuss the clinical infection of *P. multocida*, including its source of isolation and mode of transmission

130. Discuss the treatment of *P. multocida*

Francisella

131. Explain the transmission of *Francisella*, the types of infection caused by this organism and explain the most common and the most severe cases

132. Describe precautions that should be taken when working with *Francisella*

Bordetella

Brucella

133. Explain all the species of *Brucella* and include the animal(s) associated with each

134. Describe the mode of transmission of *Brucella*, including the likely candidates for infection and methods of disease prevention

135. Differentiate the four species of *Brucella* which are human pathogens based on growth in dyes, H2S and urease results.

Spirochetes

136. Describe the primary, secondary and tertiary clinical manifestations of syphilis

137. Describe the arthropod vector for *Borrelia burgdorferi*

138. Name the confirmation test used in the diagnosis of Lyme disease

Chlamydiae

139. Relate the reproductive cycle of the Chlamydiae to infectivity

140. Select and evaluate the use and the benefits of the various types of media and cell lines used in the isolation of the *Mycoplasma*, Chlamydiae and Rickettsiae

141. Compare and contrast characteristics of the *Mycoplasma*, Chlamydiae and Rickettsiae organisms discussed in lecture to the characteristics of viruses and bacteria. Clinically correlate to disease

Mycoplasma

142. Relate the reproductive cycle of the *Mycoplasma* to infectivity

143. Compare and contrast characteristics of the *Mycoplasma* to the characteristics of viruses and bacteria. Clinically correlate test results to disease or health

June 2017 Micro Objectives.doc
RIcketttsiae

144. Compare and contrast characteristics of the Rickettsiae to the characteristics of viruses and bacteria

145. Given a specific rickettsial disease, give the causative agent and mode of transmission to humans

Anaerobes

146. Discuss the various classification types of anaerobes. Identify the environmental requirements of each. Discuss the types of infections caused by anaerobes. Contrast anaerobic infections with infections caused by aerobic organisms

147. Describe acceptable methods for performing anaerobic antimicrobial susceptibility tests. Discuss methods of treatment for anaerobic infections

148. List the types of cultures that are not acceptable for anaerobe culture. List acceptable specimens

149. Recall the content of the inoculating needles/loops used to work with anaerobes

150. Name several methods to obtain anaerobic conditions

151. Recall the indicator used in determining anaerobic conditions

152. Discuss the use of the catalyst, including what they consist of and the way to rejuvenate or reactivate the catalyst

153. Discuss the reasons for not isolating anaerobes from specimens and the group of anaerobes most often isolated

154. Monitor, evaluate and resolve any problems arising from environmental and growth requirements required for the anaerobes, obligate anaerobes and aero tolerant anaerobes

Bacteroides

155. List the most frequently isolated species of the Bacteroides fragilis group

Prevotella

Porphyromonas

156. Describe the characteristics of the pigmenting Bacteroides, Prevotella, and Porphyromonas

Fusobacterium

157. State the Fusobacterium species that gives a fried egg appearance on blood agar, and that gives a bread crumb appearance on blood agar

158. Recall the species that fluoresce a brick red, coral, or chartreuse

Propionibacterium

159. Recall the major acid produced in fermentation of glucose by Propionibacterium
ACTINOMYCES

160. Name the most common and important species of *Actinomyces*

161. Describe "sulfur granules" including macroscopically and microscopically, and where they might be found

PEPTOCOCCUS

PEPTOSTREPTOCOCCUS

162. Recall the *Peptostreptococcus* species that is most susceptible to SPS

163. Name the *Peptostreptococcus* species that is indole positive

VEILLONELLA

CLOSTRIDIUM

164. List the five major groups of *Clostridium*

165. Recall the way to enhance sporulation for some members of *Clostridium*

166. Discuss three types of infections of *C. botulinum* and its effect on the body

167. List the three most common species of gas gangrene

168. Recall two factors that are important in the spread of gas gangrene

169. Discuss the reason for *C. perfringens* being called the "gas bacillus"

MYCOBACTERIA

170. Correlate, interpret and apply the cultural characteristics, gram stain morphology, rate of growth, photo reactivity (pigmentation) and biochemical reactions to identify the *Mycobacteria* discussed in lecture

171. Outline measures to assure personal safety when working with *Mycobacteria* discussed in lecture

172. Explain why clinical specimens for mycobacterial isolation require digestion and decontamination procedures

173. Define
 - Nonphotochromogen
 - Photochromogen
 - Scotochromogen

174. Name and describe the disease caused by the noncultivatable species of *Mycobacteria*

INFECTIONS BY BODY SITE

June 2017 Micro Objectives.doc
175. List the predominant flora of various body sites in a healthy individual

176. Discuss the bacteria isolated from the cerebrospinal fluid and the age groups affected by each

177. Discuss the two major causes of conjunctivitis and three causes of acute otitis media

178. Explain the three organisms associated with otitis externa and the four organisms frequently isolated from wound cultures

179. Discuss the organisms that are considered pathogenic to the lower and upper respiratory tracts, and the method used for ensuring that an adequate sputum specimen has been submitted for culture

180. Explain the pathogens that cause GI tract pathology, give examples, discuss, interpret and solve problems when isolating these organisms

181. Discuss genital tract pathogens and culture media useful in the isolation of these pathogens

182. Given a specific specimen source, be able to identify the preferred specimen collection method, transportation of the specimen, and the procedures for culturing the specimen in the lab

183. Given the clinical picture presented and the symptoms, associate the most probable organisms that cause disease in a specific body site

QUALITY MANAGEMENT

184. Explain, interpret and apply elements of quality management in the microbiology lab to include administering the program, monitoring completion of components, schedule of meetings held and corrective action taken. The program should include performance standards of biochemical differential media for bacteria, mycology etc

INFECTION CONTROL

185. Define nosocomial and community acquired infections

186. List the services or specialties of a hospital with the highest rate of infections and the services with the lowest rate

187. Describe the four ways infections are spread in a hospital and the most important way to prevent direct transmission

188. Explain the most frequent nosocomial infection syndrome along with the pathogen most often isolated

189. Discuss the four most common types of hospital-acquired infections with approximate percentages

190. Describe three factors, which may influence the development of a nosocomial infection and the financial effects of nosocomial infections

191. Explain the purpose of the Infection Control Committee and the person/department who is responsible for tracking down an outbreak of infection within a hospital
192. Explain why some nosocomial rates may be falsely decreased and the national nosocomial infection statistics

193. Describe and discuss the role of the microbiology laboratory in a successful infection control program

BIOTERROR

194. Explain the Laboratory Response Network and the function of each level in the event of a bioterror incident

195. List the Select Agents which laboratories are required to report to DHHS and CDC when recovered

196. Describe what is meant by, “Rule out or refer”
Sentara RMH School of Medical Laboratory Science

MT 412 & MT 506- Phlebotomy and Computer Science Skills Course Outline

Instructor: Cyndee Lowe, BS, MLS(ASCP)CM

Method of Instruction: Demonstration, Lecture, Video, Practice

Study Guide: Handout for Basic Phlebotomy Techniques

Course Goal: To prepare the student to function as a beginning level technologist/scientist who is able to draw blood, utilize computer systems, and solve problems in the laboratory.

6/7/17:
Computer Training
 A. Introduction to SRMH computer system

6/8/17:
I. Introduction to Phlebotomy
 A. Duties and responsibilities
 B. Safety and standard precautions
 a. Protecting yourself and the patient
 C. Tubes and Uses
 D. Order of draw
 E. Site selection
 F. Procedure for Venipuncture
 a. Vacutainer
 b. Syringe
 c. Winged Infusion set (Butterfly)
 G. Failure to obtain blood
 H. Labeling
 I. Factors affecting test results
 J. Age-Specific Considerations

6/13/17:
II. Routine Venipuncture
 A. Video “Basic Venipuncture”
 B. Demonstration of technique
6/15/17:
III. Capillary Collection Methods
 A. Finger sticks
 B. Heel sticks
 C. Video: “Quality Micro Collection”

6/20/17:
IV. Special Procedures
 A. Blood cultures
 B. Bleeding Time
 C. Glucose Tolerance Test
 D. Lactose Tolerance Test
 E. Video: “The Difficult Draw”

6/22/17: **FINAL EXAM**
Sentara RMH School of Medical Laboratory Science

MT 412 & 506 Computer Science and Laboratory Skills Objectives

The student will after the lectures, reading assignments, and verbal instructions with accuracy of 70% on a written or oral exam:

1. Explain and perform the procedures involved in the following:
 a. Identifying a patient before venipuncture is performed
 b. Performing a venipuncture
 c. Draw blood cultures
 d. Draw blood from patients with IV’s, dialysis shunts, and mastectomies
 e. Heel stick on newborns
 f. Fingerstick
 g. Glucose tolerance test
 h. Lactose tolerance test

2. Given a specific collection tube, be able to identify the anticoagulant, if any, explain its use, its chemical make up, the action of the anticoagulant on the blood sample, the resulting product (whole blood, plasma or serum), the tests that this tube may be used to perform, and in which tests the anticoagulant may cause interference.

3. Given a specific patient, determine the proper method of collection (vacutainer, syringe, capillary puncture or butterfly) for that patient and label the specimen correctly.

4. Given a specific unsatisfactory blood collection (hemolyzed, short draw, etc.), determine if the sample can be used for the specified test, what complications may arise if the sample is used, and what can be done, if anything, to salvage the sample.

5. Given patient case studies (including possible difficult and unusual sticks), describe how to gain the patient’s confidence, obtain the needed blood, present a professional appearance, and recognize when it is necessary to ask for assistance. Demonstrate good problem-solving skills in handling these difficult patients.

6. Given a specific laboratory incident, describe the standard precautions that apply to this situation, how to properly dispose of contaminated materials, report the
incident, and seek medical treatment, if indicated. (Partially covered in orientation class.)

7. Identify the major blood vessels and tendons located in the antecubital area of the arm.

8. Explain the purpose of, and the procedure for, a bleeding time including expected results, interpretation of those results, and the cause of falsely elevated or decreased results.

9. Define and explain the use of a HEPA and N95 filter mask. (Covered in orientation class.)

10. Assess a difficult patient situation, devise a plan of action to handle this patient and collect the specimen.

LAB: Perform a satisfactory venipuncture using the “arm” and venipuncture training aid for each collection method (vacutainer, syringe, butterfly) as observed by the Education Coordinator.

11. Given a specific list of tests required, determine the best method of collection, select the tubes, collect the specimen, and label the sample tubes, using good technique.

Computer Lecture

Following completion of computer training, the student should be able to:

12. List the steps involved in the selection and acquisition of laboratory information systems. (This objective will be addressed in the management class.)

13. Explain and use appropriately the computer systems found in the current clinical laboratory. Discuss computer science and principles of computers including start-up procedure and Internet use and access.

14. Explain, use, and trouble-shoot the applications of desktop PC’s to include the following: word processing, spreadsheets, databases, browsers, e-mail such as Outlook, rebooting procedures, and Windows.

15. Utilize Windows Excel, Power Point and word-processing programs.

17. List the various parts of the computer and the function of each.